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Concerning weak∗-extreme points

Eva Matoušková

Abstract. Every separable nonreflexive Banach space admits an equivalent norm such
that the set of the weak∗-extreme points of the unit ball is discrete.
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Let K be a closed, convex and bounded subset of a Banach space X . A point
x of K is called weak∗-extreme if it is an extreme point of K∗∗, the weak∗-closure
of K in X∗∗.
James’ theorem implies that the sets extK and extK∗∗ of extreme points of,

respectively, K and K∗∗, coincide if and only if the set K is weakly compact.
Godun [G] shows that the existence of an equivalent norm for which extB

and w∗-extB do not coincide characterizes nonreflexive Banach spaces, where
w∗-extB denotes the set of weak∗-extreme points of the unit ball B.
A theorem of Stegall [S] says that a Banach space X which fails the Radon-

Nykodým property admits an equivalent norm so that the set w∗-extB is empty.
Moreover, the distance from X to the set extB∗∗ is positive.
On the other hand, Phelps [P] shows that if X has the Radon-Nykodým prop-

erty then every closed, convex and bounded subset of X is the closed convex hall
of its strongly exposed points (and such points are weak∗-extreme).
The question arises of “how small” the set w∗-extB can be. A well-known result

of Lindenstrauss and Phelps shows that in an infinite dimensional reflexive Banach
space X the set extB of extreme points of the unit ball must be uncountable. In
particular, ifX is separable, the set extB cannot be isolated in the norm topology.
Godun, Lin, and Troyanski [GLT] show that if X is separable and nonreflexive,

then it admits an equivalent norm such that w∗-extB is at most countable. We
observe in this note that X can even be renormed so that w∗-extB is norm-
isolated. We do not know whether or not such an equivalent norm exists for
any nonseparable and nonreflexive Banach space. Observe that in [LP] there is
an example of a nonseparable reflexive Banach space such that extB is norm-
isolated.
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In the following we denote by spA (respectively, coA) the span (respectively,
the convex hull) of a set A ⊂ X .
The weak∗-extreme points can be characterized as follows (see, for example,

[R] and [GLT]):

Lemma 1. Let X be a Banach space, K a closed convex bounded subset of X
and x ∈ K. The following are equivalent:

(i) x is a weak∗-extreme point of K;
(ii) the open slices of K, containing x, form a neighborhood base for x in the
weak topology on K;

(iii) if yn, zn ∈ K are such that lim ‖x − (yn + zn)/2‖ = 0, than weak-
lim(yn − zn) = 0.

We shall use the following characterization of nonreflexive Banach spaces:

Theorem 2 ([J]). A Banach space X is nonreflexive iff for each 0 < ε < 1 there
exists a sequence {zn} of norm one elements so that

dist (sp{zi}
n
i=1, co{zi}

∞

i=n+1) > ε

for any n ∈ N .

Theorem 2. Let X be a separable nonreflexive Banach space. Then X admits
an equivalent norm such that the set of weak∗-extreme points of the new unit ball

is isolated in the norm topology.

Proof: Choose ε > 0 and a sequence {zn} in the unit ball of X as in Theorem 2.
Clearly, {±zn} is ε-discrete. Also {zn} does not have a weak-cluster point in X
because

∞⋂

n=1

co{zi}
∞

i=n = ∅.

Choose some weak∗-cluster point z∗∗ of {zn} in X∗∗. Denote by Y the kernel of
z∗∗ in X∗. Then it is well known that for x ∈ X

|x| := sup{〈x∗, x〉; x∗ ∈ Y, ‖x∗‖ ≤ 1}

defines an equivalent norm on X (cf. e.g. [GLT]). Denote the unit ball under this
norm by D. Because X is separable, there is a norming sequence {z∗

k
} in the unit

sphere of Y , i.e.

(1) |x| = sup{〈z∗
k
, x〉; k ∈ N}
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for every x ∈ X . Since z∗
k
are in the kernel of z∗∗, by passing to a subsequence of

{zn} if necessary, we may suppose that

(2) lim
n→∞

〈zn, z∗
k
〉 = 0 for k ∈ N.

Choose c > 0 such that |x| ≥ c‖x‖ for x ∈ X and denote γ := εc/4. Choose
a sequence {yn} dense in the sphere of the ball γD. Clearly the set

T := {±(zn ± yn)}

is discrete and symmetric. Moreover T is bounded and

γD ⊂ coT,

therefore U := coT is a unit ball of an equivalent norm on X . Now, we have only
to follow the proof in [GLT] in order to show that w∗-extU is a subset of T .
Suppose that some weak∗-extreme point x of U is not contained in T . Then

by Lemma 1 there exists a sequence {α1zni
+ α2yni

} (where α1 and α2 equal 1
or −1) such that

(3) lim
i→∞

〈α1zni
+ α2yni

, z∗
k
〉 = 〈x, z∗

k
〉 for k ∈ N.

Due to (2) we get that

(4) |〈x, z∗
k
〉| = | lim

i→∞

〈yni
, z∗

k
〉| ≤ γ,

and, because {z∗
k
} is norming, it follows that x ∈ γD. Consequently, there exists

some subsequence {ymi
} of the sequence {yn} converging in norm to x. Since

ymi
= (ymi

+ zmi
)/2 + (ymi

− zmi
)/2,

Lemma 1 implies that the sequence {zmi
} converges weakly to zero and this

a contradiction to the fact that {zmi
} does not have a weak-cluster point in X .

Remark 4. For the unit ball U constructed in the proof of the previous theorem
it holds also that the distance between the sets w∗-extU and extU∗∗ \ w∗-extU
is positive.

Proof: If x is an extreme point of a weak∗-compact set K, then the weak∗-open
slices containing x form a neighborhood basis for x in the weak∗-topology on K.
Therefore, for any x ∈ extU∗∗ there exists a sequence {α1zni

+α2yni
} (where α1

and α2 equal 1 or −1) such that (3) and (4) are satisfied. Consequently,

sup{|〈x, z∗
k
〉|; k ∈ N} ≤ γ for x ∈ extU∗∗.

From the definition of T follows that

sup{〈x, z∗
k
〉; k ∈ N} ≥ 3γ for x ∈ T.

Since ‖z∗n‖ = 1 for n ∈ N , it holds that the distance of the sets w∗-extU and
extU∗∗ \ w∗-extU is greater than γ.
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