Previous |  Up |  Next

Article

Keywords:
convex space; polytope; multifunction (map); upper semicontinuous (u.s.c.); lower semicontinuous (l.s.c.); compact map; acyclic; Kakutani map; acyclic map; admissible class; almost $p$-affine; almost $p$-quasiconvex; maximal element
Summary:
Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
References:
[Be] Ben-El-Mechaiekh H.: The coincidence problem for compositions of set-valued maps. Bull. Austral. Math. Soc. 41 (1990), 421-434. MR 1071044 | Zbl 0727.54019
[BD1] Ben-El-Mechaiekh H., Deguire P.: Approximation of non-convex set-valued maps. C. R. Acad. Sci. Paris 312 (1991), 379-384. MR 1096616 | Zbl 0719.54053
[BD2] Ben-El-Mechaiekh H., Deguire P.: General fixed point theorems for non-convex set-valued maps. C. R. Acad. Sci. Paris 312 (1991), 433-438. MR 1096627 | Zbl 0795.47036
[BD3] Ben-El-Mechaiekh H., Deguire P.: Approachability and fixed points for non-convex set-valued maps. J. Math. Anal. Appl. 170 (1992), 477-500. MR 1188567 | Zbl 0762.54033
[BDG] Ben-El-Mechaiekh H., Deguire P., Granas A.: Points fixes et coincidences pour les fonctions multivoques, II (Applications de type $\varphi$ et $\varphi^*$). C. R. Acad. Sci. Paris 295 (1982), 381-384. MR 0684731
[BK] Bohnenblust H.F., Karlin S.: On a theorem of Ville. in ``Contributions to the Theory of Games," Ann. of Math. Studies, No.24, pp.155-160, Princeton Univ. Press, 1950. MR 0041415 | Zbl 0041.25701
[Br] Brouwer L.E.J.: Über Abbildungen von Mannigfaltigkeiten. Math. Ann. 71 (1912), 97-115. MR 1511644
[D] Dzedzej Z.: Fixed point index theory for a class of nonacyclic multivalued maps. Dissertationes Math. 253 (1985), 53pp. MR 0839694 | Zbl 0592.55001
[F1] Ky Fan: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. MR 0047317 | Zbl 0047.35103
[F2] Ky Fan: A generalization of Tychonoff's fixed point theorems. Math. Ann. 142 (1961), 305-310. MR 0131268
[F3] Ky Fan: Sur un théorème minimax. C. R. Acad. Sci. Paris 259 (1964), 3925-3928. MR 0174955 | Zbl 0138.37304
[G] Glicksberg I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170-174. MR 0046638 | Zbl 0163.38301
[Go] Górniewicz L.: Homological methods in fixed point theory of multivalued maps. Dissertationes Math. 129 (1976), 71pp. MR 0394637
[GL] Granas A., Liu F.-C.: Coincidences for set-valued maps and minimax inequalities. J. Math. Pures et Appl. 65 (1986), 119-148. MR 0867668 | Zbl 0659.49007
[Ha] Ha C.-W.: Extensions of two fixed point theorems of Ky Fan. Math. Z. 190 (1985), 13-16. MR 0793344 | Zbl 0551.47024
[Hi] Himmelberg C.J.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205-207. MR 0303368 | Zbl 0225.54049
[K] Kakutani S.: A generalization of Brouwer's fixed-point theorem. Duke Math. J. 8 (1941), 457-459. MR 0004776 | Zbl 0061.40304
[Ki] Kim W.K.: Existence of maximal elements and equilibrium for a non-paracompact $N$-person game. Proc. Amer. Math. Soc. 116 (1992), 797-807. MR 1123657
[KT] Kim W.K., Tan K.-K.: A variational inequality in non-compact sets and its applications. Bull. Austral. Math. Soc. 46 (1992), 139-148. MR 1170448 | Zbl 0747.47037
[KKM] Knaster B., Kuratowski C., Mazurkiewicz S.: Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe. Fund. Math. 14 (1929), 132-137.
[L] Lessonde M.: Réduction du cas multivoque au cas univoque dans les problèmes de coïncidence. in ``Fixed Point Theory and Applications'' (M.A. Théra and J.-B. Baillon, Eds.), pp.293-302, Longman Scientific & Technical, Essex, 1991. MR 1122836
[Le] Levine N.: A decomposition of continuity in topological spaces. Amer. Math. Monthly 68 (1961), 44-46. MR 0126252 | Zbl 0100.18601
[M1] Mehta G.: Fixed points, equilibria and maximal elements in linear topological spaces. Comment. Math. Univ. Carolinae 28 (1987), 377-385. MR 0904761 | Zbl 0632.47041
[M2] Mehta G.: Weakly lower demicontinuous preference maps. Economics Letters 23 (1987), 15-18. MR 0895251
[MS] Mehta G., Sessa S.: Coincidence theorems and maximal elements in topological vector spaces. Math. Japonica 37 (1992), 839-845. MR 1186550 | Zbl 0763.47034
[Mi] Michael E.: A selection theorem. Proc. Amer. Math. Soc. 17 (1966), 1404-1406. MR 0203702 | Zbl 0178.25902
[P1] Park Sehie: Fixed point theory of multifunctions in topological vector spaces. J. Korean Math. Soc. 29 (1992), 191-208. MR 1157308 | Zbl 0758.47048
[P2] Park Sehie: Fixed point theory of multifunctions in topological vector spaces II. J. Korean Math. Soc. 30 (1993), 413-431. MR 1239332 | Zbl 0797.47029
[P3] Park Sehie: Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps. J. Korean Math. Soc. 31 (1994), 493-519. MR 1297433 | Zbl 0829.49002
[P4] Park Sehie: Fixed points of acyclic maps on topological vector spaces. Proc. 1st World Congress of Nonlinear Analysts. Zbl 0863.47042
[PB] Park S., Bae J.S.: On zeros and fixed points of multifunctions with non-compact convex domains. Comment. Math. Univ. Carolinae 34 (1993), 257-264. MR 1241735
[PSW] Park S., Singh S.P., Watson B.: Some fixed point theorems for composites of acyclic maps. Proc. Amer. Math. Soc. 121 (1994), 1151-1158. MR 1189547 | Zbl 0806.47053
[RK] Rim D.I., Kim W.K.: A fixed point theorem and existence of equilibrium for abstract economies. Bull. Austral. Math. Soc. 45 (1992), 385-394. MR 1165145 | Zbl 0745.90015
[S1] Schauder J.: Zur Theorie stetiger Abbildungen in Funktionalräumen. Math. Z. 26 (1927), 47-65. MR 1544841
[S2] Schauder J.: Der Fixpunktsatz in Funktionalräumen. Studia Math. 2 (1930), 171-180.
[Se] Sessa S.: Some remarks and applications of an extension of a lemma of Ky Fan. Comment. Math. Univ. Carolinae 29 (1988), 567-575. MR 0972839 | Zbl 0674.47041
[Ta] Tarafdar E.: An extension of Fan's fixed point theorem and equilibrium point of an abstract economy. Comment. Math. Univ. Carolinae 31 (1990), 723-730. MR 1091369 | Zbl 0745.47046
[Ty] Tychonoff A.: Ein Fixpunktsatz. Math. Ann. 111 (1935), 767-776. MR 1513031 | Zbl 0012.30803
[YP] Yannelis N.C., Prabhakar N.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Economics 12 (1983), 233-245. MR 0743037 | Zbl 0536.90019
Partner of
EuDML logo