[1] Connor J.S.:
The statistical and strong $p$-Cesàro convergence of sequences. Analysis 8 (1988), 47-63.
MR 0954458 |
Zbl 0653.40001
[2] Connor J.S.:
On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), 194-198.
MR 1006746 |
Zbl 0693.40007
[4] Freedman A.R., Sember J.J., Raphael M.:
Some Cesàro-type summability spaces. Proc. London Math. Soc. 37 (3) (1978), 508-520.
MR 0512023 |
Zbl 0424.40008
[5] Freedman A.R.. Sember J.J.:
Densities and summability. Pacific J. Math. 95 (2) (1981), 293-305.
MR 0632187
[6] Fridy J.A., Orhan C.:
Lacunary statistical summability. J. Math. Anal. Appl. 173 (1993), 497-504.
MR 1209334 |
Zbl 0786.40004
[7] Fridy J.A., Orhan C.:
Lacunary statistical convergence. Pacific J. Math. 160 (1993), 45-51.
MR 1227502 |
Zbl 0794.60012
[8] Kolk E.:
The statistical convergence in Banach spaces. Acta Comm. Univ. Tartuensis 928 (1991), 41-52.
MR 1150232
[9] Lorentz G.G.:
A contribution to the theory of divergent sequences. Acta Math. 80 (1948), 167-190.
MR 0027868 |
Zbl 0031.29501
[10] Maddox I.J.:
A new type of convergence. Math. Proc. Camb. Philos. Soc. 83 (1978), 61-64.
MR 0493034 |
Zbl 0392.40001
[11] Maddox I.J.:
Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166.
MR 0838663 |
Zbl 0631.46010
[12] Maddox I.J.:
Inclusion between $FK$ spaces and Kuttner's theorem. Math. Proc. Camb. Philos. Soc. 101 (1987), 523-527.
MR 0878899
[14] Niven I., Zuckerman H.S.:
An introduction to the theorem of numbers. 4th ed., Wiley, New York, 1980.
MR 0572268
[15] Pehlivan S.: Sequence space defined by a modulus function. Erc. Univ. J. Sci. 5 (1989), 875-880.
[16] Pehlivan S., Fisher B.:
Some sequence spaces defined by a modulus function. Math. Slovaca 44 (1994), to appear.
MR 1361822
[17] Šalát T.:
On statistically convergent sequences of real numbers. Math. Slovaca 30 (2) (1980), 139-150.
MR 0587239
[18] Schoenberg I.J.:
The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (5) (1959), 361-375.
MR 0104946 |
Zbl 0089.04002
[19] Ruckle W.H.:
$FK$ spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 25 (1973), 973-978.
MR 0338731 |
Zbl 0267.46008