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Coincidence points and maximal elements
of multifunctions on convex spaces

SEHIE PARK

Abstract. Generalized and unified versions of coincidence or maximal element theorems
of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa,
Kim and Tan are obtained. Our arguments are based on our recent works on a broad
class of multifunctions containing composites of acyclic maps defined on convex subsets
of Hausdorff topological vector spaces.
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0. Introduction

Recently, in [P1]-[P4], the author established very general coincidence and
fixed point theorems on multifunctions in a broad class containing composites of
acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
We also showed that our new results subsume many of historically well-known
theorems.

On the other hand, there have appeared a number of coincidence theorems and
maximal element theorems by several authors [Se], [MS], [BDG], [Be], [YP], [M1],
[M2], [KT], [F1]-[F3], [Hal], [Ki], [Ta]. Those results are of the same nature as
our recent works and can be deduced from the Knaster-Kuratowski-Mazurkiewicz
theory originated from [KKM].

In the present paper, improved versions of those results are obtained from
our new coincidence and fixed point theorems in [P2], [P3]. Section 2 deals with
coincidence theorems and Section 3 with maximal element theorems. In Section 4,
we give some equivalent formulations of the Himmelberg fixed point theorem [Hi].

1. Preliminaries

All Hausdorff topological vector spaces are abbreviated as t.v.s. For a t.v.s. E,
S(E,w) denotes the set of all weakly continuous seminorms. Let co, Int, and ~
denote the convex hull, interior, and closure, respectively.
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A conver space X is a nonempty convex set with any topology that induces
the Euclidean topology on the convex hulls of its finite subsets. Such convex hulls
are called polytopes.

A multifunction (or map) F : X — 2Y is a function from a set X into the
power set 2¥ of a set Y.

For topological spaces X and Y, a multifunction F': X — 2Y\{(} is said to be
upper semicontinuous (u.s.c.) if for each closed subset C' of Y, F~1(C) = {z €
X : FzNC # 0} is closed; lower semicontinuous (1.s.c.) if for each open subset D
of Y, F~1(D) is open; and compact if the range F(X) is contained in a compact
subset of Y.

A nonempty topological space is acyclic if all of its reduced Cech homology
groups over rationals vanish.

Given a class L of multifunctions, L(X,Y") denotes the set of multifunctions
T : X — 2Y belonging to L, and L, the set of finite composites of multifunctions
in L. For topological spaces X and Y, we define

f€C(X,Y) < fis a (single-valued) continuous function.

T e K(X,Y) < T is a Kakutani map; that is, Y is a convex space and T is
u.s.c. with compact convex values.

T € V(X,Y) < T is an acyclic map; that is, T is u.s.c. with compact acyclic
values.

An abstract class 2 of multifunctions is defined by

(i) 2 contains C;

(ii) each T' € A is u.s.c. and compact-valued; and

(iii) for any polytope P, each T € 2.(P, P) has a fixed point.

Note that C,K, and V are examples of 2. See Park [P2], [P3]. Moreover, the
class A of approachable maps in topological vector spaces [BD1]-[BD3], the class
of admissible maps in the sense of Gérniewicz [Go], and the class of permissible
maps of Dzedzej [D] also belong to 2. Moreover, we define

T € A7(X,Y) <= for any o-compact subset K of X, thereisa ' € A.(K,Y)
such that I'e C Tz for z € K.

T € A(X,Y) <= for any compact subset K of X, thereisa ' € A.(K,Y) as
above.

Note that 2A5(X,Y) D AZ(X,Y) D 2A(X,Y) D A(X,Y). The class K7 is
due to Lassonde [L] and V7 to Park, Singh, and Watson [PSW]. Note that K¢
includes classes K, R, and T in [L].

The following coincidence theorem is a particular form of Park [P3, Theorem 5].

Theorem 1.1. Let X be a convex space, Y a Hausdorff space, S,T : X — 2Y
multifunctions, and F € A%(X,Y). Suppose that

(1) for each z € X, Sz C Tz and Sz is open;

(2) for eachy € F(X), T~y is convex;
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(3) there exists a nonempty compact subset K of Y such that F(X)N K C
S(X); and

(4) for each N € (X), there exists a compact convex subset Ly of X contain-
ing N such that F(Ly)\K C S(Ly).

Then there exists an xg € X such that FxgNTxzy # (.

In Theorem 1.1, (X) denotes the set of all nonempty finite subsets of X. Note
that Theorem 1.1 generalizes a number of known results as shown in [P3]. More-
over, a recent work of Mehta and Sessa [MS, Theorem 2.3] is included in Theo-
rem 1.1. Note that, if F' is single-valued, the Hausdorffness of Y is not necessary.

See [P3].
We also need the following;:

Theorem 1.2 [P2, Theorem 5 (vi)]. Let X be a compact convex subset of a t.v.s.
E on which E* separates points. Then any F € A%(X, X) has a fixed point.

Theorem 1.3 [P3, Theorem 4]. Let X be a convex subset of a locally convex
t.v.s. E. Then any compact map F € %(X, X) has a fixed point.

Let p be a seminorm on a vector space E. For a convex set A, a function
g: A — FE is said to be

(i) almost p-affine if

plg(rz + (1 = r)y) —u) < rp(gr —u) + (1 = r)p(gy — u);

(ii) almost p-quasiconvez if
plg(re + (1 =r)y) — u) < max{p(gz — u),p(gy — u)}

forx,y€ A, u € E,and r € (0,1).
Note that (i) implies (ii), but not conversely.

2. Coincidence theorems

In this section, we deal mainly with coincidence theorems.

If X itself is not convex in Theorem 1.1, then we have the following variation
of Theorem 1.1 from Theorem 1.3.

Theorem 2.1. Let D be a nonempty subset of a convex space X, Y a nonempty
convex subset of a locally convex t.v.s. £, and F,G : D — 2Y multifunctions such
that

(1) FeA(D,Y) is compact;
(2) for eachy € Y, G~y is a convex subset of D; and
(3) {Int Gz : x € D} covers Y.
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Then F and G have a coincidence point xy € D; that is, Fzg N Gxzg # (.

PROOF: Since F(D) is compact, Y’ = co F(D) is o-compact (see [L]). Since Y’
is regular, it is paracompact. Therefore, G_1|y/ : Y — 2P has a continuous
selection f : Y — D (see [BDG], [YP]). Hence Ff € A7(Y’,Y’). Since F is
compact, so is F'f. By Theorem 1.3, there exists a yg € (F f)yo. Let z9 = fyo €
D. Then yg € Fxg and yg € f~1zg C Gzg, whence we have Fazg N Grg £ 0. O

Remark. If D itself is convex, Theorem 2.1 is a simple consequence of Theo-
rem 1.1 without assuming the local convexity of E.

Particular forms.

1. Sessa [Se, Theorem 8]: X = E, Y is paracompact, and F € K (D,Y).

2. Mehta and Sessa [MS, Theorem 2.1]: V" is paracompact and F' € K(D,Y).
Corollary 2.2. Let X be a nonempty convex subset of a locally convex t.v.s. E,
D a nonempty compact subset of X, and T : X — 2P a multifunction such that

(1) for each x € X, Tz is convex; and

(2) {Int T_ly}yep covers X.

Then T has a fixed point xg € D; that is, xg € Txg.
PROOF: Let X =Y, F = 1p : D — D the identity map on D, and G = T~!:

D — 2% in Theorem 2.1. Then there exists an zg € D such that zg € Gag; that
is, wg € Txg. 0

Remarks. 1. Corollary 2.2 is due to Ben-El-Mechaiekh et al. [BDG, Theo-
rem 3.2]. Ben-El-Mechaiekh [Be] raised a question whether the local convexity in
Corollary 2.2 can be eliminated.

2. It is well known that if X = D is a compact convex space, then we do not
need to assume the local convexity in Corollary 2.2. This case is known as the
Fan-Browder fixed point theorem.

Particular forms.
1. Yannelis and Prabhakar [YP, Theorem 3.2]: X is paracompact.

2. Mehta [M1, Theorem 2.2]: X is paracompact. He also assumed the nonempti-
ness of each Tz in (1), which is a trivial consequence of (2).

3. Kim and Tan [KT, Lemmal: An equivalent form of Corollary 2.2.
The following are two Fan type coincidence theorems:
Theorem 2.3. Let X be a Hausdorff compact convex space and E a t.v.s. on

which E* separates points, F : X — 2F a u.s.c. map with nonempty closed convex
values, and g € C(X, E) such that

(1) Frng(X) #0 for all x € X; and
(2) g(X) is convex and g~ '(u) is acyclic for all u € g(X).
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Then there exists an xg € X such that gxrg € Fxyg.

PRrROOF: Note that g(X) is a compact convex subset of E. Consider the map
T e K(X,g(X)) defined by Tz = FxNg(X) for z € X. In fact, Tx is nonempty,
compact and convex for each x € X. Moreover, if C is a closed subset of g(X),
then we have T-H(C) = {z € X : FxNg(X)NC # 0} ={x € X : Fx N C #
f} = F~1(C) is closed in X since F is u.s.c. Note that g~1 : g(X) — X has
closed acyclic values and closed graph in g(X) x X, where X is Hausdorff and
compact. Therefore, g~1 € V(g(X),X) and Tg~! € V.(9(X), g(X)). Hence, by
Theorem 1.2, Tg~! has a fixed point yg € (Tg_l)yo; that is, yg € Txzg for some
xo € g~ Lyo. Note that yo € Tzg C Fxg and yg = gxg. This completes our proof.

O

Theorem 2.4. Let X be a compact convex space, E a t.v.s. on which E* sepa-
rates points, F' : X — 2F an u.s.c. map with nonempty closed convex values, and
g € C(X, E) such that

(1) FxnNg(X) #0 for all z € X; and
(2) g(X) is convex and g is almost p-quasiconvex for each p € S(E, w).

Then there exists an xg € X such that gxg € Fxg.

PROOF: As in the proof of Theorem 2.3, we have the map T € K (X, g(X))
defined by Tx = Fx N g(X) for « € X. Suppose that gz ¢ Fz for each z € X.
Then the origin of E' does not belong to the compact set K := gx — Tz. For each
z € K, there exists a linear functional ¢, € E* such that £,(z) # 0. Since ¢, is
continuous, there exists an open neighborhood V; of z such that £,(y) # 0 for
every y € V. Let {V,,...,V,,} be a finite subcover of the cover {V,},cx of K
and

n
pa(y) =Y _|€z(y)| foreach ye E.
i=1

Then p; € S(F,w) such that p;(z) > 26, for all z € K for some d, > 0. Since
g is continuous and 7' is u.s.c., there exists an open neighborhood U, of x € X
such that pz(gu —v) > g for all u € Uy and v € Tu. Since {Ug : z € X}
covers X and X is compact, there exists a finite subcover {Uy,,...,Uy,} of X.
Let p := max{py, : 1 < i < k} and § = min{dy, : 1 < ¢ < k} > 0. Then
p € S(E,w) and p(gz—y) > 0 for all (x,y) € T. Now define a map G : X — 29(X)
by Gz = {y € g(X) : p(gx — y) < 6} for each x € X. Since g is almost
p-quasiconvex, G~ ly = {z € X : p(gx —y) < d} is convex for each y € g(X).
Moreover, since p and ¢ are continuous, Gz is open in g(X) for each x € X.
Further, for each y € g(X) = g(X), there exists z € X such that y = gz
and hence y € Gz. Therefore, by Theorem 1.1 with X = K, Y = ¢g(X) and
F =T e K(X,g(X)), T and G have a coincidence point xg € X; that is, there
exists a yg € Txzg N Gxrg. Since yg € Txg, we have p(gxg — yo) > J; and, since
yo € Gxg, we have p(gzg — yo) < 6. This contradiction completes our proof. O
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Particular forms of Theorems 2.3 and 2.4.

1. If X is a subset of F, g = 1y, and F : X — 2%, then Theorems 2.3
and 2.4 include earlier fixed point theorems due to Brouwer [Br], Schauder [S1],
[S2], Tychonoff [Ty], Kakutani [K], Bohnenblust and Karlin [BK], Glicksberg [G],
Fan [F1], [F3], Granas and Liu [GL], and others. See Park [P1].

2. Fan [F2, Theorem 2]: E is alocally convex t.v.s., F' : X — 2% is a continuous
(u.s.c. and ls.c.) map with nonempty compact convex values, and g satisfies the
following instead of condition (2) of Theorem 2.3:

(2)' For every closed convex set C' in E, g~1(C) is convex or empty.

3. Ha [Ha, Theorem 2]: The map g satisfies (2)’ instead of condition (2)
of Theorem 2.3. Note that (2)" implies (2) of Theorems 2.3 and 2.4, but not
conversely. It is known that condition (2) of Theorem 2.4 implies condition (2) of
Theorem 2.3 whenever p is a norm.

4. Mehta and Sessa [MS, Theorem 2.2]: E is a locally convex t.v.s. and g is
almost affine.

Corollary 2.5. Let X be a compact convex subset of a t.v.s. E on which E*
separates points and g : X — FE a continuous almost p-quasiconvex map such
that X C g(X) and g(X) is convex. Then g has a fixed point.

Particular forms. In particular, if ¢ is almost p-affine for each p € S(E,w),
then g has a fixed point. In case g is affine, Corollary 2.5 reduces to Park [P2,
Corollary 5.1], [P4, Theorem 7].

We have another coincidence theorem:

Theorem 2.6. Let X be a nonempty convex subset of a locally convex t.v.s.
E1, D a metrizable subset of a complete locally convex t.v.s. Eo, S € 2A7(D, X)
a compact map, and T : X — 2P an Ls.c. map such that, for some metric on D,
Tz is nonempty complete convex for each © € X. Then there exist points z’ € X,
y' € D such that o' € Sy’ and y' € T2'.

PROOF: Note that X’ = co S(D) is o-compact (see [L]) and hence paracompact.
Since T/ = T|x : X' — 2D is 1s.c. and has complete convex values, by the
Michael selection theorem [Mi, Theorem 1.2], it has a continuous selection f :
X' — D. Hence Sf € A2(X’, X'). Since S is compact, so is Sf. Therefore, by
Theorem 1.3, there exists an o’ € X’ such that 2’ € Sf2’. Let ¢ = fo'! C T'2' C
Tz'. Then 2’ € Sy’ and ' € D. This completes our proof. O

Remark. As Michael [Mi] observed, the completeness of Eo can be replaced by
the compactness of €6 K for every compact K C D.

Particular form. Mehta and Sessa [MS, Theorem 2.4]: X is paracompact, D is
closed, E7 is a Banach space, and S € K(D, X).
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3. Existence of maximal elements

Any binary relation R in a set X can be regarded as a multifunction T : X —
and conversely by the following obvious way:
y € Tz if and only if (z,y) € R.
Therefore, a point xg € X is called a mazimal element of a multifunction T :
X = 2Xif Ty = 0.
In this section, we deal with the existence of such maximal elements.
From Theorem 1.1, we have the following:

2X

Theorem 3.1. Let X be a convex space, Y a Hausdorff space, S,T : X — 2V
multifunctions, and F € A5 (X,Y). Suppose that
(1) for each x € X, Sz C Tx and Sz is open;
(2) for eachy € F(X), T~y is convex; and
(3) there exists a nonempty compact subset K of Y such that, for each N €
(X), there exists a compact convex subset Ly of X containing N such
that F(Ly)\K C S(Ly).
If FeNTx = 0 for all x € X, then there exists a y € F(X) N K such that
Sy =0.
PROOF: Suppose that for each y € F(X) N K, there exists an = € S~1y. Then
F(X)NK c S(X). This and (1)—(3) implies the existence of an xg € X such
that Fzg N Txg # (), by Theorem 1.1. This completes our proof. ([

Particular forms.

1. Yannelis and Prabhakar [YP, Theorem 5.1]: X =Y = K and F = 1.

2. Mehta [M2, Theorem 4]: X =Y = K and F = 1x.

3. Kim [Ki, Lemma]: X =Y, F = 1x, with a stronger coercivity condition
than (3). Similarly, other results in [Ki] can be improved.

4. Mehta and Sessa [MS, Theorem 3.3]: ¥ = K and F € K(X,Y).

From Theorem 2.1, we have the following:
Theorem 3.2. Let D be a nonempty subset of a convex space X, Y a nonempty

convex subset of a locally convex t.v.s. E, and F,G : D — 2Y multifunctions such
that

(1) FeA2(D,Y) is compact;
(2) for eachy € Y, G~y is a convex subset of D;
(3) Fx NGz =10 for all x € D; and
(4) for eachy € Y with G~y # 0, there exists an x € D such that y € Int Gz.
Then there exists ay € Y such that G~ 1y = 0.
PROOF: Suppose that G~ 1y # @ for each y € Y. Then by (4), {IntGz : = €

D} covers Y. This and (1), (2) implies the existence of an z9 € D such that
FzoN Gzg # 0, by Theorem 2.1. This contradicts (3). O
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Particular forms.
1. Yannelis and Prabhakar [YP, Theorem 5.3]: Y is paracompact, D is a com-
pact subset of Y, and F = 1p.

2. Mehta and Sessa [MS, Theorem 3.1]: Y is paracompact and F € K(D,Y).

From Theorem 2.6, we have the following:

Theorem 3.3. Let X be a nonempty convex subset of a locally convex t.v.s.
E1, D a metrizable subset of a complete locally convex t.v.s. Eo, S € 2A7(D, X)
a compact map, and T : X — 2P a I.s.c. map such that, for some metric on D,
Tx is complete convex for each x € X. If

(*) for each (x,y) € X x D, x € Sy implies y ¢ Tz,

then T has a maximal element.

PROOF: Suppose that Tx # () for each z € X. Then there exists an (z,y) €
X x D such that 2/ € Sy’ and y/ € T2/, which violates (x). O

Particular forms.

1. Yannelis and Prabhakar [YP, Theorem 5.2]: X = D is compact, S = 1y,
and E1 = E2 = R"™.

2. Mehta [M2, Theorem 5]: X = D is compact, F; = E2 is a Banach space,
and S = 1x.

3. Mehta and Sessa [MS, Theorem 3.5]: X is paracompact, D is closed, Fs is
a Banach space, and S € K(D, X).

4. Remarks on Himmelberg’s theorem

Theorem 1.3 with K instead of 27 was due to Himmelberg [Hi, Theorem 2],
which generalizes Fan’s well-known fixed point theorem [F1].

In [Ta], Tarafdar defined that a closed-valued map T : X — 2 is almost
upper semicontinuous (a.u.s.c.) if for each x € X and each open set V' containing
Tz, there exists an open set U containing x such that T(U) C V. However, as
we noted in [PB], this concept is the same as the upper semicontinuity if YV is
normal. Using this concept, Tarafdar [Ta] claimed a generalization of Fan’s fixed
point theorem. On the other hand, Rim and Kim [RK] claimed a generalization
of Himmelberg’s theorem for a.u.s.c. maps. Note that, for a single-valued map,
the concept of a.u.s.c. reduces to that of weak continuity due to Levine [Le].

In this section, we show that those generalizations are actually equivalent to
Himmelberg’s theorem.

Lemma 4.1. Let X be a topological space, Y a normal space, and T : X — 2Y
an a.u.s.c. map with nonempty closed values. Then T is u.s.c.

The proof is elementary. See [PB] or [RK, Lemma 1].
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Lemma 4.2. Let X be a nonempty convex subset of a locally convex t.v.s. E,
K a nonempty compact subset of X, and T : X — 2K an a.u.s.c. map such that
coTx C K for each x € X. ThencoT is u.s.c.

PROOF: As in the proof of [RK, Lemma 2|, 0T is a.u.s.c. with closed values.
Therefore, by Lemma 4.1, o7 is u.s.c. O

The following is the main result of this section:

Theorem 4.3. Let X be a nonempty convex subset of a locally convex t.v.s.
E, and K a nonempty compact subset of X. Then the following equivalent
statements hold:

(i) Every us.c. map T : X — 2K with nonempty closed convex values has
a fixed point.

(ii) For any a.u.s.c. map S : X — 2K with nonempty values such that co Sz C
K for each x € X, there exists an & € K such that & € T SZ.

(iit) Any map T : X — 25 such that there exists an a.u.s.c. map S : X — 2%
with () £ @ Sz C Tx for each x € X has a fixed point.

PRrROOF: Note that (i) is due to Himmelberg [Hi] and a particular form of Theo-
rem 1.3 with K replacing 7.

(i) = (i) By Lemma 4.2, ¢6.S is u.s.c. and hence, by (i), 0 S has a fixed
point.

(ii) = (iii) By (ii), €0 S has a fixed point & € €6 S& C T'%.

(iii) = (i) Put S =T in (iii). Note that u.s.c. implies a.u.s.c. O
Remarks. 1. Rim and Kim [RK, Theorem 1] and Tarafdar [Ta, Theorem 2.1]

proved (iii) under some additional restrictions. Moreover, (ii) is due to [RK,
Corollary 1].

2. Note that closed convex values in Theorem 4.3 can be replaced by closed
acyclic values (containing Sz) in view of Theorem 1.3 with V instead of AZ.
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