Previous |  Up |  Next

Article

Keywords:
multivalued nonexpansive map; fixed points set; Mosco convergence
Summary:
Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\{z\}=T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.
References:
[1] Browder F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Rational. Mech. Anal. 24 (1967), 82-90. MR 0206765 | Zbl 0148.13601
[2] Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287-292. MR 0576291 | Zbl 0437.47047
[3] Singh S.P., Watson B.: On approximating fixed points. Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. MR 0843624 | Zbl 0597.47035
[4] Reich S.: Fixed points of contractive functions. Boll. UMI 5 (1972), 26-42. MR 0309095 | Zbl 0249.54026
[5] Ćirić L.B.: Fixed points for generalized multivalued contractions. Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. MR 0341460
[6] Iséki K.: Multivalued contraction mappings in complete metric spaces. Math. Sem. Notes 2 (1974), 45-49. MR 0413070
[7] Corley H.W.: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (1986), 528-532. MR 0864769 | Zbl 0631.47041
[8] LamiDozo E.: Multivalued nonexpansive mappings and Opial's condition. Proc. Amer. Math. Soc. 38 (1973), 286-292. MR 0310718
Partner of
EuDML logo