Previous |  Up |  Next

Article

Keywords:
sublinear measure of noncompactness; orientor; field; selector; upper semicontinuity; lower semicontinuity; graph measurability; weak measurability
Summary:
In this paper we examine nonlinear integrodifferential inclusions defined in a se\-pa\-rable Banach space. Using a compactness type hypothesis involving the ball measure of noncompactness, we establish two existence results. One involving convex-valued orientor fields and the other nonconvex valued ones.
References:
[1] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980. MR 0591679 | Zbl 0441.47056
[2] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69-86. MR 0947921 | Zbl 0677.54013
[3] Davy J.L.: Properties of the solution set of a generalized differential equation. Bulletin of the Australian Math. Soc. 6 (1974), 379-398. MR 0303023
[4] Kandilakis D., Papageorgiou N.S.: On the properties of the Aumann integral with applications to differential inclusions and control systems. Czech. Math. Journ. 39 (1989), 1-15. MR 0983479 | Zbl 0677.28005
[5] Kisielewicz M.: Multivalued differential equations in separable Banach spaces. Journ. of Optim. Theory Appl. 37 (1982), 231-249. MR 0663523 | Zbl 0458.34008
[6] Klein E., Thompson A.: Theory of Correspondence. Wiley, New York, 1984. MR 0752692
[7] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlin. Anal.-TMA 4 (1980), 985-999. MR 0586861
[8] Mukshinov A.: On differential inclusions in Banach spaces. Soviet Math. Doklady 15 (1976), 1122-1125.
[9] Pachpatte B.: A note on Gronwall-Bellman inequality. J. Math. Anal. Appl. 44 (1973), 758-762. MR 0335721 | Zbl 0274.45011
[10] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation. J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
[11] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. MR 0896595 | Zbl 0619.28009
[12] Papageorgiou N.S.: Measurable multifunctions and their applications to convex integral functionals. Intern. J. Math. and Math. Sci. 12 (1989), 175-192. MR 0973087 | Zbl 0659.28008
[13] Papageorgiou N.S.: Decomposable sets in the Lebesgue-Bochner spaces. Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. MR 0942305 | Zbl 0679.46032
[14] Papageorgiou N.S.: Deterministic and random Volterra integral inclusions. Publ. de l'Institut Math. 46 (1989), 119-131. MR 1060066 | Zbl 0699.45003
[15] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces. Comment. Math. Univ. Sancti Pauli 36 (1987), 21-39. MR 0892378 | Zbl 0641.47052
[16] Saint-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem. J. Funct. Anal. 17 (1974), 112-129. MR 0374364
[17] Tarafdar E., Vyborny R.: Fixed point theorems for condensing multivalued mappings on a locally convex topological spaces. Bull. Austr. Math. Soc. 12 (1975), 161-170. MR 0383167
[18] Wagner D.: Survey of measurable selection theorems. SIAM J. Control and Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
Partner of
EuDML logo