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Existence of solutions for integrodifferential

inclusions in Banach spaces

Nikolaos S. Papageorgiou

Abstract. In this paper we examine nonlinear integrodifferential inclusions defined in a se-
parable Banach space. Using a compactness type hypothesis involving the ball measure of
noncompactness, we establish two existence results. One involving convex-valued orientor
fields and the other nonconvex valued ones.

Keywords: sublinear measure of noncompactness, orientor, field, selector, upper semicon-
tinuity, lower semicontinuity, graph measurability, weak measurability

Classification: 34G05, 45G05

1. Introduction.

In this paper, we prove two existence theorems for integrodifferential inclusions
in a separable Banach space. The first existence theorem concerns convex-valued
orientor fields, while the second deals with nonconvex-valued ones. Our “convex”
result extends the works of Davy [3, Theorem 4.2], Mukshinov [8] and Papageorgiou
[15, Theorems 3.2 and 3.5]. All these works treated differential inclusions with no
Volterra operator present. Similarly, our “noncovex” result extends the work of
Kisielewicz [5]. Furthermore, the results of the present paper extend to multivalued
integrodifferential systems, the recent work of the author [14] on Volterra integral
inclusions.

2. Preliminaries.

The purpose of this section is to briefly review some basic facts about the mea-
surability and continuity properties of multifunctions (set valued functions) that we
will need in the sequel.
Let (Ω,Σ) be a measurable space and X a separable Banach space. Throughout

this paper we will be using the following notations:

Pf(c)(X) = {A ⊆ X : nonempty, closed (convex)}

and P(w)k(c)(X) = {A ⊆ X : nonempty, (weakly-) compact, (convex)}.

A multifunction F : Ω → Pf (X) is said to be measurable, if for every x ∈ X the
R+-valued function ω → d(x, F (ω)) = inf{‖x − z‖ : z ∈ F (ω)} is measurable.
In fact this is equivalent to saying that for every U ⊆ X open, F−(U) = {ω ∈
Ω : F (ω) ∩ U 6= ∅} ∈ Σ or that there exists a sequence {fn}n≥1 of measurable

functions fn : Ω → X s.t. F (ω) = {fn(ω)}n≥1 for all ω ∈ Ω. A multifunction
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F : Ω→ 2X \{∅} is said to be weakly (or scalarly) measurable, if for every x∗ ∈ X∗

its support function ω → σ(x∗, F (ω)) = sup{(x∗, x) : x ∈ F (ω)} is measurable.
It is clear that for Pf (X)-valued multifunctions measurability implies weak mea-
surability (just observe that for every x∗ ∈ X∗, σ(x∗, F (ω)) = supn≥1(x

∗, fn(ω)),

where fn : Ω→ X are measurable functions s.t. F (ω) = {fn(ω)}n≥1 for all ω ∈ Ω).

The converse is true if there is a σ-finite measure µ(·) defined on Σ, Σ is µ-complete
and F (·) is Pwkc(X)-valued. For a multifunction F : Ω → 2X \ {∅}, the graph of
F (·) is defined by GrF = {(ω, x) ∈ Ω×X : x ∈ F (ω)}. We say that F (·) is graph
measurable, if GrF ∈ Σ × B(X), with B(X) being the Borel σ-field of X . For
Pf (X)-valued multifunctions measurability implies graph measurability. Indeed,

let fn : Ω → X n ≥ 1 be a sequence of measurable maps s.t. F (ω) = {fn(ω)}n≥1
for all ω ∈ Ω and note that GrF = {(ω, x) ∈ Ω × X : d(x, F (ω)) = 0}. But
d(x, F (ω)) = infn≥1‖x−fn(ω)‖ and for each n ≥ 1, (ω, x)→ ‖x−fn(ω)‖ is measur-
able in ω, continuous in x (i.e. a Carathéodory function), hence (ω, x)→ ‖x−fn(ω)‖
is jointly measurable⇒ (ω, x)→ d(x, F (ω)) = infn≥1‖x−fn(ω)‖ is jointly measur-
able ⇒ GrF ∈ Σ× B(X). Again the converse is true if there is a σ-finite measure
µ(·) defined on Σ and Σ is µ-complete. For more details we refer to Wagner [18].

Now suppose that (Ω,Σ, µ) is a finite measure space and F : Ω → 2X \ {∅}
a multifunction. By S1F we will denote the set of integrable selectors of F (·); i.e.

S1F = {f ∈ L1(X) : f(ω) ∈ F (ω)µ – a.e.}. This set may be empty. For a graphmea-

surable multifunction, it is nonempty if and only if ω → inf{‖z‖ : z ∈ F (ω)} ∈ L1+.

This is the case if ω → |F (ω)| = sup{‖z‖ : z ∈ F (ω)} ∈ L1+ and such a mul-
tifunction is called “integrably bounded”. For a graph measurable multifunction
S1F is closed in L

1(X) if and only if F (·) is Pf (X)-valued, and is convex if and

only if F (·) is convex valued. Also the set S1F is decomposable, in the sense that if

f1, f2 ∈ S1F and A ∈ Σ, f = χAf1+χAcf2 ∈ S1F . For further details we refer to [12]

and [13]. Using the set S1F , we can define a set valued integral for F (·) by setting
∫

Ω F (ω) dµ(ω) = {
∫

Ω f(ω) dµ(ω) : f ∈ S1F }. The vector valued integrals involved
in this definition are understood in the sense of Bochner. A detailed study of this
set valued integral can be found in the work of Kandilakis–Papageorgiou [4].

Next let Y, Z be Hausdorff topological spaces and F : Y → 2Z \{∅}. We say that
F (·) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)), if for
every U ⊆ Z open, the set F+(U) = {y ∈ Y : F (y) ⊆ U} (resp. F−(U) = {y ∈ Y :
F (y)∩U 6= ∅}) is open in Y . If F (·) is both u.s.c. and l.s.c., then we say that F (·) is
continuous. In fact continuity is equivalent to saying that F : Y → 2Z \ {∅} is con-
tinuous from Y into 2Z \{∅}, the latter equipped with the Vietoris topology. If Z is
a metric space, we can define a generalized metric on Pf (Z), known in the literature
as the Hausdorff metric, by setting h(A,B) = max[supa∈Ad(a,B), supb∈Bd(b, A)],
A,B ∈ Pf (Z). The metric space (Pf (Z), h) is complete if Z is complete. A mul-
tifunction F : Y → Pf (Z) is said to be Hausdorff continuous (h-continuous), if it
is continuous from Y into (Pf (Z), h). Since on Pk(Z) the Vietoris and Hausdorff
topologies coincide (see Klein–Thompson [6, Corollary 4.2.3, p. 41]), a Pk(Z)-valued
multifunction is continuous if and only if it is h-continuous.
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Let X be a Banach space and B its family of bounded sets. Then the Hausdorff
(ball)-measure of noncompactness β : B → R+ is defined by

β(B) = inf{r > 0 : B can be covered by finitely many balls of radius r}.

A comprehensive introduction to the subject of measures of noncompactness can
be found in the book of Banas–Goebel [1].

Finally, if {An}n≥1 ⊆ 2
X \ {∅}, we set

w − limAn = {x ∈ X : x = w − limxnk
, xnk

∈ Ank
, n1 < n2 < · · · < nk < . . . }.

3. Existence results.

Let T = [0, r] and X a separable Banach space. Let K : ∆ = {(t, s) : 0 ≤
s ≤ t ≤ r} → L(X) be a strongly continuous kernel (i.e. it is continuous from
∆ into L(X) = {bounded linear operators from X into itself} equipped with the
strong operator topology) and let V : C(T,X)→ C(T,X) be the Volterra integral

operator corresponding to the kernel K(t, s); i.e. V (x)(t) =
∫ t
0 K(t, s)x(s) ds. We

consider the following integrodifferential inclusion:

(∗)

{

ẋ(t) ∈ F (t, x(t), V (x)(t)) a.e.

x(0) = x0.

}

By a solution of (∗), we understand a function x(·) ∈ C(T,X) s.t.

x(t) = x0 +

∫ t

0
f(s) ds

for all t ∈ T and with f ∈ S1
F (·,x(·),V (x)(·)). Note that such a function is almost

everywhere differentiable and ẋ(t) = f(t) ∈ F (t, x(t), V (x)(t)) a.e.

We will start with the “convex” result. For this we will need the following
hypothesis on the orientor field F (t, x, y).

H(F )1: F : T ×X ×X → Pfc(X) is a multifunction s.t.

(1) (t, x, y)→ F (t, x, y) is weakly measurable,
(2) (x, y) → F (t, x, y) is u.s.c. from X × X into Xw, where Xw denotes the
Banach space X equipped with the weak topology,

(3) β(F (t, B1, B2)) ≤ k(t)[β(B1) + β(B2)], for all B1, B2 ⊆ X nonempty,
bounded and with k(·) ∈ L1+,

(4) |F (t, x, y)| = sup{‖z‖ : z ∈ F (t, x, y)} = a(t) + b(t)(‖x‖ + ‖y‖) a.e. with
a(·), b(·) ∈ L1+.

In the proof of the “convex” existence result, we will need the following lemma,
which in fact is of independent interest.
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Lemma 3.1. If (Ω,Σ, µ) is a σ-finite, complete measure space, X is a separable

Banach space, F : Ω → 2X \ {∅} is a graph measurable multifunction and u :
Ω×X → R is a measurable function, then ω → m(ω) = sup{u(ω, x) : x ∈ F (ω)} is
measurable.

Proof: We need to show that for every θ ∈ R, the level set {ω ∈ Ω : m(ω) > θ} ∈
Σ. Note that m(ω) > θ if and only if there exists x ∈ F (ω) s.t. u(ω, x) > θ. So
{ω ∈ Ω : m(ω) > θ} = projΩ{(ω, x) ∈ GrF : u(ω, x) > θ}.
But since by hypothesis F (·) is graph measurable and u(·, ·) is measurable, we

have {(ω, x) ∈ GrF : u(ω, x) > θ} ∈ Σ × B(X). Then from von Neumann’s
projection theorem (see Saint–Beuve [16, Theorem 4]), we get that projΩ{(ω, x) ∈
GrF : u(ω, x) > θ} ∈ Σ. So m(·) is indeed measurable as claimed by the lemma.

�

Now we are ready to state and prove our first existence theorem:

Theorem 3.2. If hypothesis H(F )1 holds, then the problem (∗) admits a solution.

Proof: We will start by deriving an a priori bound for the solutions of (∗). So let
x(·) ∈ C(T,X) be such a solution. Then by definition we have:

x(t) = x0 +

∫ t

0
f(s) ds

for all t ∈ T and with f ∈ L1(X), f(t) ∈ F (t, x(t), V (x)(t)) a.e. Hence

‖x(t)‖ ≤ ‖x0‖+

∫ t

0
‖f(s)‖ ds

≤ ‖x0‖+

∫ t

0
(a(s) + b(s)(‖x(s)‖ + ‖

∫ s

0
K(s, τ)x(τ) dτ‖)) ds

≤ ‖x0‖+

∫ t

0
(a(s) + b(s)‖x(s)‖+ b(s)

∫ s

0
M1‖x(τ)‖ dτ) ds,

where ‖K(t, s)‖L ≤ M1 for all (t, s) ∈ ∆. Invoking Pachpatte’s inequality (see
Theorem 1 in [9]), we get that there exists M2 > 0 s.t. for all t ∈ T ‖x(t)‖ ≤ M2.

Then ‖V (x)(t)‖ ≤
∫ t
0 M1‖x(s)‖ ds ≤M1M2b =M3.

Define F̂ : T ×X ×X → Pfc(X) by

F̂ (t, x, y) = F (t, pM2
(x), pM3

(y)),

where pM2
(·), pM3

(·) : X → X are the M2 and M3 radial retractions, respectively.
Recalling that pM2

(·), pM3
(·) are Lipschitz continuous and using the hypothesis

H(F )1 (1), we see that (t, x, y) → F̂ (t, x, y) is weakly measurable, while from the
hypothesis H(F )1 (2) and Theorem 7.3.11, p. 87 of Klein–Thompson [6], we have
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that (x, y) → F̂ (t, x, y) is u.s.c. from X × X into Xw. Also if B1, B2 ⊆ X are
nonempty, bounded sets, we have

β(F̂ (t, B1, B2)) = β(F (t, pM2
(B1), pM3

(B2)))

≤ k(t)[β(pM2
(B1)) + β(pM3

(B2))].

But note that pM2
(B1) ⊆ conv(B1∪{0})⇒ β(pM2

(B1)) ≤ β(conv(B1 ∪{0})) =
β(B1) and similarly we get that β(pM3

(B2)) ≤ β(B2). Therefore we have that

β(F̂ (t, B1, B2)) ≤ k(t)[β(B1) + β(B2)] a.e.

Finally, observe that |F̂ (t, x, y)| ≤ a(t) + b(t)(M2 +M3) = ϕ(t) a.e. with ϕ(·) ∈

L1+. Let W = {y ∈ C(T,X) : y(t) = x0 +
∫ t
0 g(s) ds, t ∈ T, ‖g(t)‖ ≤ ϕ(t) a.e.}.

Clearly this is a nonempty, bounded, equicontinuous and closed subset of C(T,X).

Next let R : W → 2W be defined by

R(x) = {y ∈W : y(t) =

= x0 +

∫ t

0
f(s) ds, t ∈ T, f ∈ L1(X), f(t) ∈ F̂ (t, x(t), V (x)(t)) a.e.}.

First we will show that R(·) has nonempty values. Fix x(·) ∈ C(T,X) and
x∗ ∈ X∗ and let θ1 : T → T × X × X be defined by θ1(t) = (t, x(t), V (x)(t)).
Clearly θ1(·) is measurable. Also let θ2 : T ×X×X → R be defined by θ2(t, x, y) =

σ(x∗, F̂ (t, x, y)). Because of the hypothesisH(F )1 (1), θ2(·, ·, ·) is measurable. Then

θ2 ◦ θ1 : T → R defined by (θ2 ◦ θ1)(t) = σ(x
∗, F̂ (t, x(t), V (x)(t))) is measurable ⇒

t → F̂ (t, x(t), V (x)(t)) is measurable for the Lebesgue σ-field on T (see Section 2).
So from Aumann’s selection theorem (see Theorem 5.10 of Wagner [18]) and since

|F̂ (t, x, y)| ≤ ϕ(t) a.e. with ϕ(·) ∈ L1+, we see that S
1
F̂ (·,x(·),V (x)(·))

6= ∅, which of

course implies that R(x) 6= ∅ for all x(·) ∈ C(T,X). Clearly R(x) is convex and
we will now show that it is closed. Indeed, let {yn}n≥1 ⊆ R(x) and assume that
yn → y in C(T,X). Then by definition

yn(t) = x0 +

∫ t

0
fn(s) ds,

for all t ∈ T and with fn ∈ S1
F̂ (·,x(·),V (x)(·))

, n ≥ 1. Let G(t) = conv{fn(t)}n≥1,

t ∈ T . Clearly G(·) is measurable and G(t) ⊆ F̂ (t, x(t), V (x)(t)) ∈ Pkc(X) (since

β(F̂ (t, B1, B2)) ≤ k(t)[β(B1) + β(B2)] a.e.; just take B1 = {x(t)} and B2 =

{V (x)(t)}, note that β(B1) = β(B2) = 0 and so obtain that β(F̂ (t, B1, B2)) =

0 ⇒ F̂ (t, x(t), V (x)(t)) ∈ Pkc(X)). Hence G(t) ∈ Pkc(X), t ∈ T , and |G(t)| ≤

F̂ (t, x(t), V (x)(t))| ≤ ϕ(t) a.e. So invoking Proposition 3.1 of [10], we deduce that
S1G ∈ Pwkc(L

1(X)) and so by the Eberlein–Smulian theorem and by passing to

a subsequence if necessary, we may assume that fn
w
→ f in L1(X). Since
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S1
F̂ (·,x(·),V (x)(·))

∈ Pwkc(X) (see Proposition 3.1 in [10]), we get that

f ∈ S1
F̂ (·,x(·),V (x)(·))

. Then y(t) = x0 +
∫ t
0 f(s) ds for all t ∈ T and with f ∈

S1
F̂ (·,x(·),V (x)(·))

. So R(x) ∈ Pfc(C(T,X)).

Next let B ⊆W be nonempty and closed. In what follows, we set B(t) = {x(t) :
x(·) ∈ B}. We have

R(B)(t) = {x0 +

∫ t

0
f(s) ds : f ∈ L1(X), f(s) ∈ F̂ (s, x(s), V (x)(s)) a.e., x ∈ B}.

Note that

{F̂ (s, x(s), V (x)(s)) : x ∈ B} ⊆ F̂ (s,B(s), V (B)(s))

for all s ∈ T . Also for every x∗ ∈ X∗, we have

σ(x∗, F̂ (s,B(s), V (B)(s))) =σ(x∗,
⋃

x∈B(s)

y∈V (B)(s)

F̂ (s, x, y)) =

=sup
[

σ(x∗, F̂ (s, x, y)) : (x, y) ∈ B(s)× V (B)(s)
]

.

Observe that s → B(s) is measurable, since if {xn}n≥1 ⊆ B is dense in B,

then from the continuity of the evaluation map, we have that B(s) = {xn(s)}n≥1,

establishing the measurability of B(·). Similarly, using Theorem 3.1 of Kandilakis–

Papageorgiou [4], we have that V (B)(s) = {
∫ s
0 K(s, τ)xn(τ) dτ}n≥1

⇒ s→ V (B)(s)

is measurable. Since (s, x, y)→ σ(x∗, F̂ (s, x, y)) is measurable (it follows from the
hypothesis H(F )1 (1)), from Lemma 3.1, we deduce that s→ sup[σ(x∗, F (s, x, y)) :

x ∈ B(s), y ∈ V (B)(s)] is measurable ⇒ s→ σ(x∗, F̂ (s,B(s), V (B)(s))) is measur-

able⇒ s→ convF (s,B(s), V (B)(s)) = H(s) is measurable for the Lebesgue σ-field
on T (see Section 2). Thus there exist hn : T → X n ≥ 1 Lebesgue measurable

functions s.t. for all t ∈ T H(t) = {hn(t)}n≥1. So invoking Proposition 1.6 of

Mönch [7] (see also Lemma 2.2 of Kisielewicz [5]), we have

β(R(B)(t)) ≤ β[

∫ t

0
{hn(s)}n≥1 ds] ≤

∫ t

0
β({hn(s)}n≥1) ds

=

∫ t

0
β(H(s)) ds =

∫ t

0
β(F̂ (s,B(s), V (B)(s))) ds

≤

∫ t

0
k(s)[β(B(s)) + β(V (B)(s))] ds =

∫ t

0
k(s)[β(B(s)) + β(V (B)(s))] ds.
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From the definition of the Volterra integral operator V (·), we have

β(V (B)(s)) = β(V (B)(s)) = β
[

∫ s

0
K(s, τ)B(τ) dτ

]

= β
[

∫ s

0
K(s, τ)xn(τ) dτ : n ≥ 1

]

≤

∫ s

0
β(K(s, τ)xn(τ) : n ≥ 1) dτ (see Mönch [7])

≤

∫ s

0
M1β({xn(τ)}n≥1) dτ =

∫ s

0
M1β(B(τ)) dτ

⇒

∫ t

0
β(V (B)(s)) ds ≤

∫ t

0

∫ s

0
M1β(B(τ)) dτ ds ≤M1r

∫ t

0
β(B(τ)) dτ.

So we have:

β(R(B)(t)) ≤

∫ t

0
k(s)[β(B(s)) +M1rβ(B(s))] ds.

Let ψ(B) = supt∈T [e
−λ

R
t

0
k(s) dsβ(B(t))], λ > 0. Using the properties of β(·)

and the fact that W ⊆ C(T,H) is equicontinuous, we can easily check that ψ(·) is
a sublinear measure of noncompactness, in the sense of Banas–Goebel [1]. We have

β(R(B)(t)) ≤

∫ t

0
k(s)(1 +M1r)e

−λ
R

s

0
k(τ) dτ eλ

R
s

0
k(τ) dτβ(B(s)) ds

≤

∫ t

0
k(s)(1 +M1r)ψ(B)e

λ
R

s

0
k(τ) dτ =

(1 +M1r)ψ(B)

λ

∫ t

0
d
(

eλ
R

s

0
k(τ) dτ

)

=
(1 +M1r)

λ
eλ

R
t

0
k(s) dsψ(B)⇒ β(R(B)(t))e−r

R
t

0
k(s) ds

≤

(

1 +M1r

λ

)

ψ(B), t ∈ T ⇒ ψ(R(B)) ≤

(

1 +M1r

λ

)

ψ(B).

So if we choose λ > (1 +M1r) we have that R(·) is a ψ-contraction.
Next we wil show that the multifunction R(·) has a closed graph. To this end,

let [xn, yn] ∈ GrR, n ≥ 1, [xn, yn]→ [x, y] in C(T,X)×C(T,X). By definition for
every n ≥ 1, we have

yn(t) = x0 +

∫ t

0
fn(s) ds

for all t ∈ T and with fn ∈ L1(X), fn(t) ∈ F (t, xn(t), V (xn)(t)) a.e. But xn → x

in C(T,X) and so V (xn)→ V (x) in C(T,X). Since F̂ (t, ·, ·) is u.s.c. from X ×X

into Xw, using Theorem 7.4.2, p. 90 of Klein–Thompson [6], we have

conv
⋃

n≥1

F̂ (t, xn(t), V (xn)(t)) = G(t) ∈ Pwkc(X)

and clearly t → G(t) is a measurable multifunction, with |G(t)| = sup{‖z‖ : z ∈
G(t)} ≤ ϕ(t) a.e. So invoking once again Proposition 3.1 of [10], we get that S1G ∈
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Pwkc(L
1(X)). Since {fn}n≥1 ⊆ S1G, from the Eberlein–Smulian theorem and by

passing to a subsequence if necessary, we may assume that fn
w
→ f in L1(X). Using

Theorem 3.1 of [11] we have

f(t) ∈ conv w − lim{fn(t)}n≥1

⊆ conv w − lim F̂ (t, xn(t), V (xn)(t))

⊆ F̂ (t, x(t), V (x)(t)) a.e.

the last inclusion following from the fact that F̂ (t, ·, ·) is u.s.c. from X × X into

Xw, is convex-valued and xn
s
→ x, V (xn)

s
→ V (x) in C(T,X). Hence

y(t) = x0 +

∫ t

0
f(s) ds

for all t ∈ T and with f ∈ S1
F̂ (·,x(·),V (x)(·))

. Thus [x, y] ∈ GrR; i.e. R(·) has a closed

graph in W ×W .
Apply Theorem 4.1 of Tarafdar–Vyborny [17], to get x ∈ R(x). Then as in the

beginning of the proof, using the definition of F̂ (t, x, y) and Pachpatte’s inequality
(Theorem 1 in [9]), we get that ‖x(t)‖ ≤ M2, ‖V (x)(t)‖ ≤ M3 for all t ∈ T and

so F̂ (t, x(t), V (x)(t)) = F (t, x(t), V (x)(t)). Hence x(·) ∈ C(T,X) is the desired
solution of (∗). �

Now we will prove the “nonconvex” analog of Theorem 3.2. For this we will need
the following hypothesis on the orientor field F (t, x, y).
H(F )2: F : T ×X ×X → Pf (X) is a multifunction s.t.

(1) (t, x, y)→ F (t, x, y) is graph measurable,
(2) (x, y)→ F (t, x, y) is l.s.c.,
(3) β(F (t, B1, B2)) ≤ k(t)[β(B1) + β(B2)] a.e. for all B1, B2 ⊆ X nonempty,
bounded and with k(·) ∈ L1+,

(4) |F (t, x, y)| = sup{‖z‖ : z ∈ F (t, x, y)} ≤ a(t) + b(t)(‖x‖ + ‖y‖) a.e. with
a(·), b(·) ∈ L1+.

Theorem 4.3. If hypothesis H(F )2 holds, then (∗) admits a solution.

Proof: As in the beginning of the proof of Theorem 3.2, we can get that for
every solution x(·) ∈ C(T,X) of (∗), we have ‖x(t)‖ ≤ M2 and ‖V (x)(t)‖ ≤ M3
for all t ∈ T . As before, define F̂ (t, x, y) = F (t, pM2

(x), pM3
(y)). Again we can

easily check that F̂ (·, ·, ·) is graph measurable, F̂ (t, ·, ·) is l.s.c., β(F̂ (t, B1, B2)) ≤

k(t)[β(B1) + β(B2)] a.e. and|F̂ (t, x, y)| = sup{‖z‖ : z ∈ F̂ (t, x, y)} ≤ ϕ(t) a.e. with
ϕ(·) ∈ L1+. Set

W = {y ∈ C(T,X) : y(t) = x0 +

∫ t

0
f(s) ds, t ∈ T, ‖f(t)‖ ≤ ϕ(t) a.e.}.
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ThenW is a closed, convex, bounded and equicontinuous subset in C(T,X). Let

R :W → 2L
1(X) be defined by

R(x) = S1
F̂ (·,x(·),V (x)(·))

.

Note that for every x ∈ W , the map ηx : T × X → T × X × X × X de-
fined by ηx(t, v) = (t, x(t), V (x)(t), v) is measurable. Then GrF̂ (·, x(·), V (x)(·)) =

η−1x (GrF̂ ) ∈ B(T ) × B(X) since F̂ (·, ·, ·) is graph measurable. So t → F̂ (t, x(t),
V (x)(t)) is measurable for the Lebesgue σ-field on T . Thus S1

F̂ (·,x(·),V (x)(·))
6= ∅

and in fact it belongs in Pf (L
1(X)) and is decomposable (see Section 2). Hence

R :W → Pf (L
1(X)) and from Theorem 4.1 of [11], we know that it is l.s.c. So we

can apply Theorem 3 of Bressan–Colombo [2] and get v : W → L1(X) continuous
map s.t. v(x) ∈ R(x) for all x ∈W . Then define u :W →W by

u(x)(t) = x0 +

∫ t

0
v(x)(s) ds, t ∈ T.

Let B ⊆W be nonempty and closed. We have

β(u(B)(t)) ≤ β
[

∫ t

0
v(xn)(s) ds : n ≥ 1

]

≤

∫ t

0
β(v(xn)(s) : n ≥ 1) ds

≤

∫ t

0
β(F̂ (s,B(s), V (B)(s))) ds ≤

∫ t

0
k(s)[β(B(s)) + β(V (B)(s))] ds

≤

∫ t

0
k(s)[β(B(s)) +M1rβ((B)(s))] ds.

As in the proof of Theorem 3.2, set ψ(B) = supt∈T [e
−λ

R
t

0
k(s)dsβ(B(t))], which

is a sublinear measure of noncompactness on the nonempty subsets of W . Then, as
before, we get

ψ(u(B)) ≤
1 + rM1

λ
ψ(B).

If we choose λ > (1 + rM1), we get that u(·) is a ψ-contraction. Clearly u(·) is
continuous, since v(·) is. Hence Theorem 4.1 of Tarafdar–Vyborny [17] tells us that
u(·) has a fixed point; i.e. there exists x ∈ W s.t. x = u(x). Using the definition

of F̂ (t, x, y) and Pachpatte’s inequality, we can easily check that ‖x(t)‖ ≤ M2 and

‖V (x)(t)‖ ≤M3 for all t ∈ T . So F̂ (t, x(t), V (x)(t)) = F (t, x(t), V (x)(t)). Therefore
x(·) ∈ C(T,X) solves (∗). �

Remark. If F : T × X × X → Pf (X) is a multifunction s.t. (x, y) → F (t, x, y)
is h-continuous, then (x, y) → bdF (t, x, y) is h-continuous, too (here bdF (t, x, y)
denotes the boundary of F (t, x, y)). Thus if F (·, ·, ·) satisfies also H(F )2 (1), (3)
and (4), we deduce that the integrodifferential inclusion ẋ(t) ∈ bdF (t, x(t), V (x)(t)),
x(0) = x0 has a solution. Such results are useful in control theory, in connection
with the maximum principle.
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