Previous |  Up |  Next

Article

Keywords:
translative packing; convex body
Summary:
Every sequence of positive or negative homothetic copies of a planar convex body $C$ whose total area does not exceed $0.175$ times the area of $C$ can be translatively packed in $C$.
References:
[1] Böröczky, Jr.: Finite packing and covering. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge 154 (2004). MR 2078625 | Zbl 1061.52011
[2] Januszewski, J.: A note on translative packing a triangle by sequences of its homothetic copies. Period. Math. Hungar. 52 (2) (2006), 27–30. DOI 10.1007/s10998-006-0010-7 | MR 2265648 | Zbl 1127.52023
[3] Januszewski, J.: Translative packing of a convex body by sequences of its positive homothetic copies. Acta Math. Hungar. 117 (4) (2007), 349–360. DOI 10.1007/s10474-007-6121-7 | MR 2357419 | Zbl 1174.52010
[4] Lassak, M.: Approximation of convex bodies by rectangles. Geom. Dedicata 47 (1993), 111–117. DOI 10.1007/BF01263495 | MR 1230108 | Zbl 0779.52007
[5] Meir, A., Moser, L.: On packing of squares and cubes. J. Combin. Theory 5 (1968), 126–134. DOI 10.1016/S0021-9800(68)80047-X | MR 0229142
[6] Moon, J. W., Moser, L.: Some packing and covering theorems. Colloq. Math. 17 (1967), 103–110. MR 0215197 | Zbl 0152.39502
[7] Novotny, P.: A note on packing clones. Geombinatorics 11 (1) (2001), 29–30. MR 1837580 | Zbl 1005.52010
Partner of
EuDML logo