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TRANSLATIVE PACKING OF A CONVEX BODY
BY SEQUENCES OF ITS HOMOTHETIC COPIES

Janusz Januszewski

Abstract. Every sequence of positive or negative homothetic copies of a
planar convex body C whose total area does not exceed 0.175 times the area
of C can be translatively packed in C.

Let C be a planar convex body with area |C|. Moreover, let (Ci) be a finite or
infinite sequence of homothetic copies of C. We say that (Ci) can be translatively
packed in C if there exist translations σi such that σiCi are subsets of C and that
they have pairwise disjoint interiors. Denote by φ(C) the greatest number such
that every sequence of (positive or negative) homothetic copies of C whose total
area does not exceed φ(C)|C| can be translatively packed in C. In [2] it is showed
that φ(T ) = 2

9 ≈ 0.222 for any triangle T . Moreover, φ(S) = 0.5 for any square
S (see [6]). By considerations presented in [7] or in Section 2.11 of [1] we have
φ(C) ≥ 0.125. The aim of the paper is to prove that φ(C) ≥ 0.175 for any convex
body C. It is very likely that φ(C) ≥ 2

9 for any convex body C.
We say that a rectangle is of type a × h if one of its sides, of length a, is

parallel to the first coordinate axis and the other side has length h. Moreover, let
[a1, a2]× [b1, b2] =

{
(x, y); a1 ≤ x ≤ a2, b1 ≤ y ≤ b2

}
.

The packing method presented in the proof of Theorem is similar to that from [3].

Lemma 1. Let S be a rectangle of side lengths h1 and h2. Every sequence of
squares of sides parallel to the sides of S and of side lengths not greater than λ
can be translatively packed in S provided λ ≤ h1 and λ ≤ h2 and the total area of
squares in the sequence does not exceed 1

2 |S|.

Lemma 2. Let S be a rectangle of side lengths h1 and h2. Every sequence of
squares of sides parallel to the sides of S and of side lengths not greater than λ
can be translatively packed in S provided λ < h1 and λ < h2 and the total area of
squares in the sequence does not exceed λ2 + (h1 − λ)(h2 − λ).

Lemma 3. For each convex body C there exist homothetic rectangles P and R such
that P is inscribed in C, R is circumscribed about C and that 1

2 |R| ≤ |C| ≤ 2|P |.

Lemma 1 was proved by Moon and Moser in [6], Lemma 2 by Meir and Moser
in [5] and Lemma 3 by Lassak in [4].
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Fig. 1

Theorem. Every (finite or infinite) sequence of positive or negative homothetic
copies of a planar convex body C whose total area does not exceed 0.175|C| can be
translatively packed in C.

Proof. Let C be a planar convex body, let Ci be a homothetic copy of C with a
ratio µi and let λi = |µi| for i = 1, 2, . . . . Moreover, assume that

∑
|Ci| ≤ 0.175|C|.

We can assume, without loss of generality, that λ1 ≥ λ2 ≥ · · · ≥ 0. Obviously,
λ1 ≤

√
0.175 < 0.42. Let R be the rectangle described in Lemma 3. Moreover,

let P ⊂ C be a rectangle homothetic to R and of the area |P | = 1
4 |R|. Because

of the affine invariant nature of the problem, we can assume that P and R are
squares and that R = [0, 1] × [0, 1] (see Figure 1). Let p and r be numbers such
that P = [p, p+ 1

2 ]×
[
r, r + 1

2
]

and let q = 1
2 − p, s = 1

2 − r. We can assume that
s ≥ p ≥ q (see Figure 1).

Observe that it is possible to place C1 in C ∩
(
[0, t1]× [0, 1]

)
, where

t1 = λ1(1 + 2p) .

Indeed, it is possible to pack C1 in C ∩
(
[t− λ1, t]× [0, 1]

)
, where

1
2
λ1

= p
t−λ1

(see
Figure 2). Consequently, t = λ1(1 + 2p).

Consider four cases. In all cases we show that if C1, C2, . . . cannot be translatively
packed in C, then

∑
λ2
i > 0.175, i.e.

∑
|Ci| =

∑
λ2
i |C| > 0.175|C|, which is again

a contradiction.

Case 1, when λ1 ≤ p
1+2p .

Obviously, it is possible to place C1 in C ∩
(
[0, p] ×

[
r, 1

2 + r
])

. Since λ2 ≤ λ1
and s ≥ p, it is possible to pack C2 in C ∩

([
p, 1

2 + p
]
× [1− s, 1]

)
(see Figure 1).

By Lemma 2 we know that any sequence of squares of side lengths not greater
than λ3 whose total area does not exceed λ2

3 + ( 1
2 − λ3)2 can be translatively

packed in 1
2 ×

1
2 . Each Ci is contained in a square Ri of sides parallel to the sides

of R and with area |Ri| = |Ci|/|C|. Consequently, if the total area of C3, C4, . . .
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does not exceed
[
λ2

3 + ( 1
2 − λ3)2]|C|, then the bodies can be translatively packed

in P = 1
2 ×

1
2 .

This implies that if C1, C2, . . . cannot be translatively packed in C, then∑
|Ci| =

∑
λ2
i |C| > λ2

1|C|+ λ2
2|C|+

[
λ2

3 +
(1

2 − λ3

)2]
|C| .

Hence∑
λ2
i > λ2

1 + λ2
2 + λ2

3 +
(1

2 − λ3

)2
≥ 3λ2

3 +
(1

2 − λ3

)2
= 4λ2

3 − λ3 + 1
4 ≥ 0.1875 .

Case 2, when λ1 >
p

1+2p and λ2 ≤ p
1+2p .

We place C1 in C ∩
(
[0, t1] × [r, 1

2 + r]
)

(see Figure 2) and we place C2
in C ∩

([
p, 1

2 + p
]
× [1 − s, 1]

)
. The remaining bodies C3, C4, . . . are packed in[

t1,
1
2 + p

]
×
[
r, 1

2 + r
]
.

By Lemma 2 we deduce that if (Ci) cannot be translatively packed in C, then
the sum of λ2

i is greater than

λ2
1 + λ2

2 + λ2
3 +

(1
2 + p− t1 − λ3

)(1
2 − λ3

)
.

Consequently,∑
λ2
i > λ2

1 + 2λ2
3 +

[1
2 + p(1− 2λ1)− λ1 − λ3

] (1
2 − λ3

)
.

Since λ1 <
1
2 and p ≥ 1

4 , we have
∑
λ2
i ≥ f1(λ1, λ3), where

f1(λ1, λ3) = λ2
1 + 2λ2

3 +
(3

4 −
3
2λ1 − λ3

)(1
2 − λ3

)
.

By using the standard method of finding the absolute minimum of the function of
two variables it is easy to check that f1(λ1, λ3) ≥ f1

( 7
26 ,

11
78
)
> 0.185.

Case 3, when λ2 >
p

1+2p and p > 0.41.
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We place C1 in C ∩
(
[0, t1]×

[
r, 1

2 + r
])

. The remaining copies C2, C3, . . . are
packed in

[
t1,

1
2 + p

]
×
[
r, 1

2 + r
]
. If (Ci) cannot be translatively packed in C, then∑

λ2
i > λ2

1 + λ2
2 + (1

2 + p− λ1 − 2λ1p− λ2)(1
2 − λ2).

By taking 0.41 instead of p we obtain that∑
λ2
i > λ2

1 + λ2
2 + (0.91− 1.82λ1 − λ2)(0.5− λ2).

A standard computation shows that this value is greater than 0.175.
Case 4, when λ2 >

p
1+2p and p ≤ 0.41.

First of all, we show that t1+t2+λ3 ≤ 1, where t2 = λ2(1+2q). By p+ 1
2 +q = 1

we have t2 = λ2(2− 2p). If λ3 > 1− t1 − t2, then

λ2
1 + λ2

2 + λ2
3 > λ2

1 + λ2
2 +

[
1− λ1(1 + 2p)− λ2(2− 2p)

]2
.

By λ1 ≥ λ2 and p < 0.41 we have

λ2
1 + λ2

2 + λ2
3 > λ2

1 + λ2
2 +

(
1− 1.82λ1 − 1.18λ2

)2
.

It is easy to check that this value is greater than 0.175, which is a contradiction.
We place C1 in C∩

(
[0, t1]×[r, 1

2 +r]
)

and we place C2 in C∩
(
[1−t2, 1]×[r, 1

2 +r]
)
.

The remaining bodies C3, C4, . . . are packed in [t1, 1− t2]×
[
r, 1

2 + r
]
. By Lemma

1 we deduce that if (Ci) cannot be translatively packed in C, then∑
λ2
i > λ2

1 + λ2
2 + 1

2 ·
1
2
[
1− λ1(1 + 2p)− λ2(2− 2p)

]
.

By taking 0.41 instead of p we obtain that∑
λ2
i > λ2

1 − 0.455λ1 + λ2
2 − 0.295λ2 + 0.25 .

A standard computation shows that this value is greater than 0.175. �
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