Previous |  Up |  Next

Article

Keywords:
continuation principle; coincidence degree; second order differential systems; bound sets; Floquet type boundary conditions
Summary:
Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions.
References:
[1] Andres, J., Malaguti, L., Taddei, V.: Bounded solutions of Carathéodory differential inclusions: a bound sets approach. Abstr. Appl. Anal. 9 (2003), 547–571. DOI 10.1155/S108533750321006X | MR 1981485 | Zbl 1036.34011
[2] Andres, J., Malaguti, L., Taddei, V.: A bounding function approach to multivalued boundary values problems. Set-valued Methods in Dynamic Systems, Special Issue of Dynam. Systems Appl. 16 (2007), 37–48. MR 2305427
[3] Erbe, L., Palamides, P. K.: Boundary value problems for second order differential systems. J. Math. Anal. Appl. 127 (1) (1987), 80–92. DOI 10.1016/0022-247X(87)90141-7 | MR 0904211 | Zbl 0635.34017
[4] Erbe, L., Schmitt, K.: Boundary value problems for second order differential equations. Nonlinear Anal. Appl., Proc. 7th Int. Conf. (Arlington 1986), Lect. Notes Pure Appl. Math. 109 (1987), 179–184. MR 0912292 | Zbl 0636.34012
[5] Gaines, R .E., Mawhin, J.: Coincidence degree and nonlinear differential equations. Lectures Notes in Math., Springer–Verlag, Berlin 586 (1977). MR 0637067 | Zbl 0339.47031
[6] Hartman, P.: Ordinary Differential Equations. Wiley-Interscience, New York, 1969. MR 0419901
[7] Lloyd, N. G.: Degree Theory. Cambridge University Press, Cambridge, 1978. MR 0493564 | Zbl 0367.47001
[8] Mawhin, J.: Boundary value problems for nonlinear second order vector differential equations. J. Differential Equations 16 (1974), 257–269. DOI 10.1016/0022-0396(74)90013-8 | MR 0361250 | Zbl 0301.34019
[9] Mawhin, J.: The Bernstein-Nagumo problem and two-point boundary value problem for ordinary differential equations, Qualitative theory of differential equations. Colloq. Math. Soc. János Bolyai, Szeged 30 II (1979), 709–740. MR 0680616
[10] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Series, Amer. Math. Soc., Providence, RI 40 (1979). MR 0525202 | Zbl 0414.34025
[11] Mawhin, J., Thompson, H. B.: Periodic or bounded solutions of Carathéodory systems of ordinary differential equations. J. Dynam. Differential Equations 15 (2-3) (2003), 327–334. DOI 10.1023/B:JODY.0000009739.00640.44 | MR 2046722 | Zbl 1055.34035
[12] Mawhin, J., Ward Jr., J. R.: Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete Contin. Dynam. Systems 8 (1) (2002), 39–54. MR 1877827 | Zbl 1087.34518
[13] Scorza Dragoni, G.: Intorno a un criterio di esistenza per un problema di valori ai limiti. Rend. Accad. Naz. Lincei 28 (6) (1938), 317–325.
[14] Taddei, V., Zanolin, F.: Bound sets and two-points boundary value problems for second order differential equations. Georg. Math. J., Special issue dedicated to 70th birthday of Prof. I. Kiguradze 14 (2) (2007). MR 2341286
[15] Thompson, H. B.: Existence of solutions for a two-point boundary value problem. Rend. Circ. Mat. Palermo (2) 35 (2) (1986), 261–275. DOI 10.1007/BF02844736 | MR 0892085 | Zbl 0608.34018
Partner of
EuDML logo