[2] Cartan, E.:
Sur les variétés à connexion affine et la théorie de la relativité généralisée $($deuxiéme partie$)$. Ann. Ecole Norm. Sup. 42 (1925), 17–88.
MR 1509263
[3] Duggal, K., Sharma, R.:
Semi-symmetric metric connections in a semi-Riemannian manifold. Indian J. Pure Appl. Math. 17 (11) (1986), 1276–1282.
MR 0868964 |
Zbl 0607.53012
[5] Hayden, H. A.: Subspace of a space with torsion. Proc. London Math. Soc. 34 (1932), 27–50.
[6] Imai, T.:
Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection. Tensor (N.S.) 23 (1972), 300–306.
MR 0336597 |
Zbl 0262.53041
[8] Konar, A., Biswas, B.:
Lorentzian manifold that admits a type of semi-symmetric metric connection. Bull. Calcutta Math. Soc. 93 (5) (2001), 427–437.
MR 1909170 |
Zbl 1021.53043
[9] O’Neill, B.:
Semi-Riemannian geometry with applications to relativity. Academic Press, London, 1983.
MR 0719023
[10] Yano, K.:
On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586.
MR 0275321 |
Zbl 0213.48401