Previous |  Up |  Next

Article

Keywords:
essential weak ideal; weak socle; minimal ideal; almost discrete space; scattered space; Stone-Čech compactification; realcompactification
Summary:
Let $C(X)$ be the ring of real continuous functions on a completely regular Hausdorff space. In this paper an almost discrete space is determined by the algebraic structure of $C(X)$. The intersection of essential weak ideal in $C(X)$ is also studied.
References:
[1] Azarpanah, F.: Essential ideals in $C(X)$. Period. Math. Hungar. 3 (12) (1995), 105–112. DOI 10.1007/BF01876485 | MR 1609417 | Zbl 0869.54021
[2] Azarpanah, F.: Intersection of essential ideals in $C(X)$. Proc. Amer. Math. Soc. 125 (7) (1997), 2149–2154. DOI 10.1090/S0002-9939-97-04086-0 | MR 1422843 | Zbl 0867.54023
[3] Dietrich, W.: On the ideals in $C(X)$. Trans. Amer. Math. Soc. 152 (1970), 61–77. DOI 10.1090/S0002-9947-1970-0265941-2 | MR 0265941
[4] Gillman, L., Jerison, M.: Rings of continuous functions. Springer-Verlag, 1979. MR 0407579
[5] Goodearl, K. R.: Von Neumann regular rings. Pitman, San Francisco, 1979. MR 0533669 | Zbl 0411.16007
[6] Henriksen, M., Wilson, R. G.: Almost discrete SV-space. Topology Appl. 46 (1992), 89–99. DOI 10.1016/0166-8641(92)90123-H | MR 1184107 | Zbl 0791.54049
[7] Karamzadeh, O. A. S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$. Proc. Amer. Math. Soc. 93 (1985), 179–184. MR 0766552 | Zbl 0524.54013
[8] Zand, M. R. Ahmadi: Strongly Blumberg space. 5th Annual Iranian Math. Conf. January 26–29, Ahvaz, Iran, 2005.
[9] Zand, M. R. Ahmadi: Strongly Blumberg space. Ph.D. thesis, Shahid Chamran University of Ahvaz in Iran, 2006.
Partner of
EuDML logo