[1] Belkhelfa, M., Deszcz, R., Glogowska, M., Hotlos, M., Kowalczyk, D., Verstraelen, L.: PDE’s, Submanifolds and Affine Differential Geometry. vol. 57, ch. On some type of curvature conditions, Banach Center Publ., 2002.
[2] Belkhelfa, M., Deszcz, R., Verstraelen, L.:
Symmetry properties of $3-$dimensional D’Atri spaces. Kyungpook Math. J. 46 (2006), 367–376.
MR 2261390 |
Zbl 1120.53010
[4] Cartan, E.:
Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris, 1928.
MR 0020842
[6] Chen, B. Y.:
Some conformal invariants of submanifolds and their applications. Boll. Un. Mat. Ital. 10 (1974), 380–385.
MR 0370436 |
Zbl 0321.53042
[7] Chen, B. Y.:
Geometry of Submanifolds and Its Applications. Science University of Tokyo, 1981.
MR 0627323 |
Zbl 0474.53050
[8] Chen, B. Y.:
Handbook of Differential Geometry. vol. 1, ch. Riemannian submanifolds, pp. 187–418, North-Holland, Elsevier, Amsterdam, 2000.
MR 1736854
[9] Choi, T., Lu, Z.:
On the DDVV conjecture and the comass in calibrated geometry (I). preprint.
MR 2429620 |
Zbl 1180.53055
[10] Defever, F., Deszcz, R., Dhooghe, P., Verstraelen, L., Yaprak, S.:
On Ricci pseudo-symmetric hypersurfaces in spaces of constant curvature. Results in Math. 27 (1995), 227–236.
DOI 10.1007/BF03322827 |
MR 1331096
[11] Deszcz, R.:
On pseudosymmetric spaces. Bull. Soc. Math. Belg., Série A 44 (1992), 1–34.
MR 1315367 |
Zbl 0808.53012
[12] Deszcz, R., Hotloś, M., Sentürk, Z.:
On Ricci pseudosymmetric hypersurfaces in space forms. Demonstratio Math. 34 (2004), 203–214.
MR 2053116 |
Zbl 1055.53011
[13] Deszcz, R., Verstraelen, L., Yaprak, S.:
Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor. Chinese J. Math. 22 (1994), 139–157.
MR 1283222 |
Zbl 0817.53008
[14] Deszcz, R., Yaprak, S.:
Curvature properties of Cartan hypersurfaces. Colloq. Math. 67 (1994), 91–98.
MR 1292946 |
Zbl 0816.53032
[15] Dillen, F., Fastenakels, J., van der Veken, J.: Three-dimensional submanifolds of $E^5$ with extremal normal curvature. preprint.
[18] Haesen, S., Verstraelen, L.:
Classification of the pseudo-symmetric space-times. J. Math. Phys. 45 (2004), 2343–2346.
DOI 10.1063/1.1745129 |
MR 2059697
[19] Haesen, S., Verstraelen, L.: Differential Geometry and Topology, Discrete and Computational Geometry. ch. Curvature and symmetries of parallel transport, pp. 197–238, IOS Press, NATO Science Series, 2005.
[22] Kowalski, O., Sekizawa, M.:
Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces. Rend. Mat. Appl. (7) 17 (1997), 477–512.
MR 1608724 |
Zbl 0889.53026
[23] Levi-Civita, T.: Nozione di parallelismo in una varietá qualcunque e conseguente spezificazione geometrica della curvatura Riemanniana. Rend. Circ. Mat. Palermo (2) 42 (1917), 173–204.
[24] Rouxel, B.: Sur une famille de A-surfaces d’un espace euclidien $E^4$. Proc. 10. Österreichischer Mathematiker Kongress, Insbruck, 1981.
[25] Schouten, J. A.: Die direkte Analysis zur neueren Relativitätstheorie. Verhandelingen Kon. Akad. van Wetenschappen te Amsterdam, Sectie I 12 (6) (1918), 1–95.
[26] Smet, P. J. De, Dillen, F., Verstraelen, L., Vrancken, L.:
A pointwise inequality in submanifold theory. Arch. Math. (Basel) 35 (1999), 115–128.
MR 1711669 |
Zbl 1054.53075
[27] Suceavă, B. D.: DDVV conjecture. preprint.
[28] Szabó, Z.:
Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I. The local version. J. Differential Geom. 17 (1982), 531–582.
MR 0683165
[29] Szabó, Z.:
Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. II. The global version. Geom. Dedicata 19 (1985), 65–108.
DOI 10.1007/BF00233102 |
MR 0797152
[30] Thurston, W. M.:
Three-dimensional Geometry and Topology. vol. 1, Princeton University Press, 1997.
MR 1435975 |
Zbl 0873.57001
[31] Verstraelen, L.:
Geometry and Topology of Submanifolds. vol. VI, ch. Comments on the pseudo-symmetry in the sense of Deszcz, pp. 119–209, World Sci. Publ. Co., Singapore, 1994.
MR 1315102 |
Zbl 0832.00044
[32] Wintgen, P.:
Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris 288 (1979), 993–995.
MR 0540375 |
Zbl 0421.53003