Previous |  Up |  Next

Article

Keywords:
meromorphic function; uniqueness; nonlinear differential polynomials; small function; weakly weighted sharing
Summary:
Dealing with a question of Lahiri [6] we study the uniqueness problem of meromorphic functions concerning two nonlinear differential polynomials sharing a small function. Our results will not only improve and supplement the results of Lin-Yi [16], Lahiri Sarkar [12] but also improve and supplement a very recent result of the first author [1].
References:
[1] Banerjee, A.: On uniqueness for nonlinear differential polynomials sharing the same $1$-point. Ann. Polon. Math. 89 (3) (2006), 259–272. DOI 10.4064/ap89-3-3 | MR 2262553 | Zbl 1104.30018
[2] Fang, C. Y., Fang, M. L.: Uniqueness of meromorphic functions and differential polynomials. Comput. Math. Appl. 44 (5–6) (2002), 607–617. DOI 10.1016/S0898-1221(02)00175-X | MR 1925805 | Zbl 1035.30018
[3] Fang, M. L., Hong, W.: A unicity theorem for entire functions concerning differential polynomials. Indian J. Pure Appl. Math. 32 (9) (2001), 1343–1348. MR 1875450 | Zbl 1005.30023
[4] Frank, G., Reinders, M.: A unique range set for meromorphic functions with 11 elements. Complex Variables Theory Appl. 37 (9) (1998), 185–193. DOI 10.1080/17476939808815132 | MR 1687880 | Zbl 1054.30519
[5] Hayman, W. K.: Meromorphic Functions. The Clarendon Press, Oxford, 1964. MR 0164038 | Zbl 0115.06203
[6] Lahiri, I.: Uniqueness of meromorphic functions when two linear differential polynomials share the same $1$-points. Ann. Polon. Math. 71 (2) (1999), 113–128. MR 1703886 | Zbl 0938.30022
[7] Lahiri, I.: Value distribution of certain differential polynomials. Internat. J. Math. Math. Sci. 28 (2) (2001), 83–91. DOI 10.1155/S0161171201011036 | MR 1885054 | Zbl 0999.30023
[8] Lahiri, I.: Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J. 161 (2001), 193–206. MR 1820218 | Zbl 0981.30023
[9] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables Theory Appl. 46 (2001), 241–253. DOI 10.1080/17476930108815411 | MR 1869738 | Zbl 1025.30027
[10] Lahiri, I., Banerjee, A.: Weighted sharing of two sets. Kyungpook Math. J. 46 (1) (2006), 79–87. MR 2214802 | Zbl 1103.30017
[11] Lahiri, I., Pal, R.: Nonlinear differential polynomials sharing $1$-points. Bull. Korean Math. Soc. 43 (1) (2006), 161–168. DOI 10.4134/BKMS.2006.43.1.161 | MR 2204868 | Zbl 1183.30028
[12] Lahiri, I., Sarkar, A.: Nonlinear differential polynomials sharing $1$-points with weight two. Chinese J. Contemp. Math. 25 (3) (2004), 325–334. MR 2159311 | Zbl 1069.30051
[13] Lin, S., Lin, W. C.: Uniqueness of meromorphic functions concerning weakly weighted sharing. Kodai Math. J. 29 (2006), 269–280. DOI 10.2996/kmj/1151936441 | MR 2247436 | Zbl 1126.30018
[14] Lin, W. C.: Uniqueness of differential polynomials and a problem of Lahiri. Pure Appl. Math. 17 (2) (2001), 104–110, (in Chinese). MR 1848848
[15] Lin, W. C., Yi, H. X.: Uniqueness theorems for meromorphic function. Indian J. Pure Appl. Math. 35 (2) (2004), 121–132. MR 2040726 | Zbl 1056.30031
[16] Lin, W. C., Yi, H. X.: Uniqueness theorems for meromorphic functions concerning fixed points. Complex Variables Theory Appl. 49 (11) (2004), 793–806. DOI 10.1080/02781070412331298624 | MR 2097218 | Zbl 1067.30065
[17] Mohon’ko, A. Z.: On the Nevanlinna characteristics of some meromorphic functions. Theory of Functions. Funct. Anal. Appl. 14 (1971), 83–87.
[18] Yang, C. C.: On deficiencies of differential polynomials II. Math. Z. 125 (1972), 107–112. MR 0294642 | Zbl 0217.38402
[19] Yi, H. X.: Uniqueness of meromorphic functions and a question of C. C. Yang. Complex Variables Theory Appl. 14 (14) (1990), 169–176. DOI 10.1080/17476939008814415 | MR 1048716 | Zbl 0701.30025
[20] Yi, H. X.: On characteristic function of a meromorphic function and its derivative. Indian J. Math. 33 (2) (1991), 119–133. MR 1140875 | Zbl 0799.30018
[21] Yi, H. X.: Meromorphic functions that share one or two values. Complex Variables Theory Appl. 28 (1995), 1–11. DOI 10.1080/17476939508814833 | Zbl 0841.30027
Partner of
EuDML logo