[1] Bloom T., Graham I.:
A geometric characterization of points of type $m$ on real submanifolds of $C^{n}$. J. Differential Geometry 12 (1977), no. 2, 171–182.
MR 0492369
[2] Bloom T.:
On the contact between complex manifolds and real hyp in $C^{3}$. Trans. Amer. Math. Soc. 263 (1981), no. 2, 515–529.
MR 0594423
[3] Boas H. P., Straube E. J., Yu J. Y.:
Boundary limits of the Bergman kernel and metric. Michigan Math. J. 42 (1995), no. 3, 449–461.
MR 1357618 |
Zbl 0853.32028
[5] D’Angelo J.:
Orders od contact, real hypersurfaces and applications. Ann. Math. 115 (1982), 615–637.
MR 0657241
[6] Diedrich K., Herbort G.:
Pseudoconvex domains of semiregular type. in Contributions to Complex Analysis and Analytic geometry (1994), 127–161.
MR 1319347
[7] Diedrich K., Herbort G.: An alternative proof of a theorem by Boas-Straube-Yu. in Complex Analysis and Geometry, Trento 1995, Pitman Research Notes Math. Ser.
[8] Fornaess J. E., Stensones B.:
Lectures on Counterexamples in Several Complex Variables. Princeton Univ. Press 1987.
MR 0895821
[9] Isaev A., Krantz S. G.:
Domains with non-compact automorphism groups: a survey. Adv. Math. 146 (1999), 1–38.
MR 1706680
[10] Kohn J. J.:
Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542.
MR 0322365
[11] Kolář M.:
Convexifiability and supporting functions in ${\mathbb{C}}^2$. Math. Res. Lett. 2 (1995), 505–513.
MR 1355711
[12] Kolář M.:
Generalized models and local invariants of Kohn Nirenberg domains. to appear in Math. Z.
MR 2390081 |
Zbl 1137.32014
[13] Kolář M.:
On local convexifiability of type four domains in ${\mathbb{C}}^2$. Differential Geometry and Applications, Proceeding of Satellite Conference of ICM in Berlin 1999, 361–371.
MR 1708924
[14] Kolář M.:
Necessary conditions for local convexifiability of pseudoconvex domains in ${\mathbb{C}}^2$. Rend. Circ. Mat. Palermo 69 (2002), 109–116.
MR 1972429
[15] Kolář M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542.
[16] Nikolov N.:
Biholomorphy of the model domains at a semiregular boundary point. C.R. Acad. Bulgare Sci. 55 (2002), no. 5, 5–8.
MR 1938822 |
Zbl 1010.32018
[17] Yu J.:
Peak functions on weakly pseudoconvex domains. Indiana Univ. Math. J. 43 (1994), no. 4, 1271–1295.
MR 1322619 |
Zbl 0828.32003