Previous |  Up |  Next

Article

Keywords:
closed $k$-form; universal space; $H$-principle
Summary:
In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^{d(m,k)}$ as a result of an embedding of $M^m$ to $U^{d(m,k)}$.
References:
[1] Dold A., Thom R.: Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. 67 (2), (1958), 239–281. MR 0097062 | Zbl 0091.37102
[2] Dold A., Puppe D.: Homologie nicht-additiver Funktoren. Anwendungen. Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312. MR 0150183 | Zbl 0098.36005
[3] Gromov M.: Partial Differential Relations. Springer-Verlag 1986, also translated in Russian, (1990), Moscow-Mir. MR 0864505 | Zbl 0651.53001
[4] Gromov M.: privat communication. Zbl 1223.37080
[5] Nash J.: The embedding problem for Riemannian manifolds. Ann. of Math. 63 (1), (1956), 20–63. MR 0075639
[6] Le H. V., Panák M., Vanžura J.: Manifolds admitting stable forms. Comment. Math. Univ. Carolin. (2007), to appear. MR 2433628 | Zbl 1212.53051
[7] Thom R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 17–86. MR 0061823 | Zbl 0057.15502
[8] Tischler D.: Closed 2-forms and an embedding theorem for symplectic manifolds. J. Differential Geom. 12 (1977), 229–235. MR 0488108 | Zbl 0386.58001
Partner of
EuDML logo