Article
Keywords:
closed $k$-form; universal space; $H$-principle
Summary:
In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^{d(m,k)}$ as a result of an embedding of $M^m$ to $U^{d(m,k)}$.
References:
[1] Dold A., Thom R.:
Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. 67 (2), (1958), 239–281.
MR 0097062 |
Zbl 0091.37102
[2] Dold A., Puppe D.:
Homologie nicht-additiver Funktoren. Anwendungen. Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312.
MR 0150183 |
Zbl 0098.36005
[3] Gromov M.:
Partial Differential Relations. Springer-Verlag 1986, also translated in Russian, (1990), Moscow-Mir.
MR 0864505 |
Zbl 0651.53001
[5] Nash J.:
The embedding problem for Riemannian manifolds. Ann. of Math. 63 (1), (1956), 20–63.
MR 0075639
[6] Le H. V., Panák M., Vanžura J.:
Manifolds admitting stable forms. Comment. Math. Univ. Carolin. (2007), to appear.
MR 2433628 |
Zbl 1212.53051
[7] Thom R.:
Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 17–86.
MR 0061823 |
Zbl 0057.15502
[8] Tischler D.:
Closed 2-forms and an embedding theorem for symplectic manifolds. J. Differential Geom. 12 (1977), 229–235.
MR 0488108 |
Zbl 0386.58001