[1] Baldoni W.:
General represenation theory of real reductive Lie groups. In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72.
MR 1476492
[2] Britten D. J., Hooper J., Lemire F. W.:
Simple $C_n$-modules with multiplicities 1 and application. Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335.
MR 1297597
[3] Green M. B., Hull C. M.:
Covariant quantum mechanics of the superstring. Phys. Lett. B, 225 (1989), 57–65.
MR 1006387
[4] Howe R.:
$\theta $-correspondence and invariance theory. Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285.
MR 0546602
[5] Habermann K.:
The Dirac operator on symplectic spinors. Ann. Global Anal. Geom. 13 (1995), 155–168.
MR 1336211 |
Zbl 0842.58042
[6] Habermann K., Habermann L.:
Introduction to symplectic Dirac operators. Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006.
MR 2252919 |
Zbl 1102.53032
[7] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry. Ph.D. thesis, Charles University of Prague, Prague, 2001.
[8] Kashiwara M., Schmid W.:
Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups. In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488.
MR 1327544
[9] Kashiwara M., Vergne M.:
On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49.
MR 0463359
[10] Kostant B.:
Symplectic Spinors. Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152.
MR 0400304 |
Zbl 0321.58015
[11] Krýsl S.:
Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of $\mathfrak{sp}(2n,\mathbb{C})$. J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72.
MR 2286881
[12] Krýsl S.:
Symplectic spinor valued forms and operators acting between them. Arch. Math.(Brno) 42 (2006), 279–290.
MR 2322414
[13] Krýsl S.:
Classification of $1^{st}$ order symplectic spinor operators in contact projective geometries. to appear in J. Differential Geom. Appl.
MR 2458281
[14] Reuter M.:
Symplectic Dirac-Kähler Fields. J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085.
MR 1722329 |
Zbl 0968.81037
[15] Rudnick S.: Symplektische Dirac-Operatoren auf symmetrischen Räumen. Diploma Thesis, University of Greifswald, Greifswald, 2005.
[16] Schmid W.:
Boundary value problems for group invariant differential equations. Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322.
MR 0837206 |
Zbl 0621.22014
[17] Severa V.: Invariant differential operators on spinor-valued differential forms. Ph.D. thesis, Charles University of Prague, Prague, 1998.
[18] Sommen F., Souček V.:
Monogenic differential forms. Complex Variables Theory Appl. 19 (1992), 81–90.
MR 1228331 |
Zbl 0765.30032
[19] Tirao J., Vogan D. A., Wolf J. A.:
Geometry and Representation Theory of Real and $p$-Adic Groups. Birkhäuser, 1997.
MR 1486131
[21] Weil A.:
Sur certains groups d’opérateurs unitaires. Acta Math. 111 (1964), 143–211.
MR 0165033
[22] Woodhouse N. M. J.:
Geometric quantization. 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997.
MR 1183739 |
Zbl 0907.58026