Article
Keywords:
Cartan geometry; homogeneous space; infinitesimal automorphism; holonomy; conformal geometry
Summary:
We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres.
References:
[1] Ambrose W., Singer I. M.:
A theorem on holonomy. Trans. Amer. Math. Soc. 75 (1953), 428–443.
MR 0063739 |
Zbl 0052.18002
[2] Armstrong S.: Definite signature conformal holonomy: a complete classification. 2005. math.DG/0503388.
[3] Čap A.:
Infinitesimal automorphisms and deformations of parabolic geometries. 2005, to appear in J. Europ. Math. Soc. math.DG/0508535.
MR 2390330 |
Zbl 1161.32020
[5] Čap A., Schichl H.:
Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29(3) (2000), 453–505.
MR 1795487 |
Zbl 0996.53023
[6] Čap A., and Slovák J.: Parabolic Geometries. Book in preparation.
[7] Cartan É.: Les espaces à connexion conforme. Ann. Soc. Pol. Math. (2) (1923), 172–202.
[9] Leitner F.:
Conformal holonomy of bi-invariant metrics. 2004. math.DG/0406299.
Zbl 1138.53041
[11] Tanaka N.:
On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. (1979), 23–84.
MR 0533089
[12] Wang H.-Ch.:
On invariant connections over a principal fibre bundle. Nagoya Math. J. 13 (1958), 1–19.
MR 0107276 |
Zbl 0086.36502
[13] Yamaguchi K.:
Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. (1993), 413–494.
MR 1274961 |
Zbl 0812.17018