[2] Borel É.: Leçons sur les fonctions monogènes uniformes d’une variable complexe. Gauthier Villars, Paris, 1917.
[3] Fuglede B.:
Finely Harmonic Functions. Lecture Notes in Math. 289, Springer, Berlin, 1972.
MR 0450590 |
Zbl 0248.31010
[4] Fuglede B.:
Fine topology and finely holomorphic functions. In: Proc. 18th Scandinavian Congr. Math., Aarhus, 1980, Birkhäuser, Boston, 1981, 22–38.
MR 0633349
[5] Fuglede B.:
Sur les fonctions finement holomorphes. Ann. Inst. Fourier, Grenoble 31 (4) (1981), 57–88.
MR 0644343 |
Zbl 0445.30040
[6] Fuglede B.:
Fonctions BLD et fonctions finement surharmoniques. In: Séminaire de Théorie du Potentiel, Paris, No. 6, Lecture Notes in Math. 906, Springer, Berlin, 1982, 126–157.
MR 0663563 |
Zbl 0484.31003
[7] Fuglede B.:
Fonctions finement holomorphes de plusieurs variables - un essai. Lecture Notes in Math. 1198, Springer, Berlin, 1986, 133–145.
MR 0874767 |
Zbl 0595.32008
[8] Fuglede B.:
Finely Holomorphic Functions. A Survey, Rev. Roumaine Math. Pures Appl. 33 (4) (1988), 283–295.
MR 0950128 |
Zbl 0671.31006
[9] Gilbert J. E., Murray M. A. M.:
Clifford algebras and Dirac operators in harmonic analysis. Cambridge studies in advanced mathematics, vol. 26, Cambridge, 1991.
MR 1130821 |
Zbl 0733.43001
[10] Kilpeläinen T., Malý J.:
Supersolutions to degenerate elliptic equations on quasi open sets. Commun. Partial Differential Equations 17 (3&4) (1992), 371–405.
MR 1163430
[11] Lávička R.:
A generalisation of Fueter’s monogenic functions to fine domains. to appear in Rend. Circ. Mat. Palermo (2) Suppl.
MR 2287132
[12] Lávička R.:
A generalisation of monogenic functions to fine domains. preprint.
MR 2490593
[14] Lyons T.:
Finely harmonic functions need not be quasi-analytic. Bull. London Math. Soc. 16 (1984), 413–415.
MR 0749451 |
Zbl 0541.31002