Previous |  Up |  Next

Article

Summary:
In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar{K}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
References:
[1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian manifolds of conullity two. World Sci. 1996. MR 1462887 | Zbl 0904.53006
[2] Domashev V. V., Mikeš J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163; translation from Mat. Zametki, 23 2 (1978), 297–304. MR 0492674 | Zbl 0406.53052
[3] Eisenhart L. P.: Non-Riemannian Geometry. Princenton Univ. Press. 1927, Colloquium Publ. Vol. 8., AMS, Providence, 2003. MR 0035081
[4] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. MR 0581924 | Zbl 0444.53032
[5] Kaygorodov V. R.: On Riemannian spaces $D_n^m$. Itogi Nauki i Tekhniki,Tr. Geom. Sem. Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1974, 359–373.
[6] Kaygorodov V. R.: Structure of curvature of space-time. Itogi Nauki i Tekhniki, Problemy Geometrii, Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1983, 177–204. MR 0697392
[7] Lakomá L., Jukl M.: The decomposition of tensor spaces with almost complex structure. Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 145–150. MR 2069402 | Zbl 1064.53015
[8] Mikeš J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb., Kharkov, 23 (1980), 90–98. Zbl 0463.53013
[9] Mikeš J.: On geodesic mappings of $m$-symmetric and generally semi-symmetric spaces. Russ. Math. 36 8 (1992), 38–42; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 8 (363) (1992), 42–46. MR 1233688 | Zbl 0816.53009
[10] Mikeš J.: Geodesic mappings onto semisymmetric spaces. Russ. Math. 38 2 (1994), 35–41; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2 (381) (1994), 37–43. MR 1302090 | Zbl 0835.53049
[11] Mikeš J.: On special F-planar mappings of affine-connected spaces. Vestn. Moskov. Univ. 3 (1994), 18–24. MR 1315721
[12] Mikeš J.: On the general trace decomposition problem. Differential Geom. Appl. Proc. Conf. Aug. 28 – Sept. 1, Brno, 1995, Czech Republic, Masaryk Univ., Brno 1996, 45–50. MR 1406322
[13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. (New York) 78 3 (1996), 311–333. MR 1384327 | Zbl 0866.53028
[14] Mikeš J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89 3 (1998), 1334–1353. MR 1619720 | Zbl 0983.53013
[15] Mikeš J., Pokorná O.: On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. MR 1972433 | Zbl 1023.53015
[16] Mikeš J., Radulović Ž., Haddad M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces. Russ. Math. 40 10 (1996), 28–32; Izv. Vyssh. Uchebn. Mat. 10 (413) (1996), 30–35. MR 1447076 | Zbl 0890.53041
[17] Mikeš J., Rachůnek L.: $T$-semisymmetric spaces and concircular vector fields. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 187–193. MR 1972434
[18] Mikeš J., Sinyukov N. S.: On quasiplanar mappings of spaces of affine connection. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1(248) (1983), 55–61; (English) Sov. Math. 27 1 (1983), 63–70. MR 0694014 | Zbl 0526.53013
[19] Otsuki T., Tashiro Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. MR 0066024 | Zbl 0057.14101
[20] Petrov A. Z.: New method in general relativity theory. Moscow, Nauka, 1966, 495p.
[21] Sakaguchi T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure. Hokkaido Math. J. 3 (1974), 203–212. MR 0370411 | Zbl 0305.53024
[22] Shirokov P. A.: Selected Work in Geometry. Kazan State Univ. Press, Kazan, 1966.
[23] Sinyukov N. S.: Geodesic mappings of Riemannian spaces. Moscow, Nauka, 1979, 256p. MR 0552022 | Zbl 0637.53020
[24] Škodová M., Mikeš J., Pokorná O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. MR 2152369 | Zbl 1109.53019
[25] Sobchuk V. S., Mikeš J., Pokorná O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces. Novi Sad J. Math. 29 3 (1999), 309–312. MR 1771008 | Zbl 1012.53015
[26] Yano K.: Concircular geometry. I-IV. Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511.
[27] Yano K.: Differential geometry on complex and almost complex spaces. Oxford-London-New York-Paris-Frankfurt, Pergamon Press 1965, XII, 323p. MR 0187181 | Zbl 0127.12405
Partner of
EuDML logo