Previous |  Up |  Next

Article

Summary:
This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.
References:
[1] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. I. Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161]. MR 1962116 | Zbl 1028.81044
[2] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. II. Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069]. MR 2022994 | Zbl 1097.81548
[3] Alekseev A., Strobl T.: Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. MR 2151966
[4] Alvarez-Gaumé L., Freedman D. Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Comm. Math. Phys. 80, 443 (1981) MR 0626710
[5] Bergamin L.: Generalized complex geometry and the Poisson sigma model. Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283]. MR 2148015 | Zbl 1067.81046
[6] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models. arXiv:hep-th/0603130. MR 2260375 | Zbl 1105.53053
[7] Bredthauer A., Lindström U., Persson J.: First-order supersymmetric sigma models and target space geometry. JHEP 0601, 144 (2006) [arXiv:hep-th/0508228]. MR 2200293
[8] Buscher T., Lindström U., Roček M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B202, 94 (1988). MR 0930852
[9] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. arXiv:hep-th/0511179. MR 2247462 | Zbl 1105.53063
[10] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984) 157.
[11] Grisaru M. T., Massar M., Sevrin A., Troost J.: The quantum geometry of $N = (2,2)$ non-linear sigma-models. Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218]. MR 1603804
[12] Gualtieri M.: Generalized complex geometry. Oxford University DPhil thesis, [arXiv:math. DG/0401221]. MR 2811595 | Zbl 1235.32020
[13] Hitchin N.: Generalized Calabi-Yau manifolds. Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099]. MR 2013140 | Zbl 1076.32019
[14] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry. [arXiv:math. DG/0503432]. MR 2217300 | Zbl 1110.53056
[15] Howe P. S., Sierra G.: Two-dimensional supersymmetric nonlinear sigma models with torsion. Phys. Lett. B148, 451 (1984). MR 0769268
[16] Howe P. S., Lindström U., Wulff L.: Superstrings with boundary fermions. JHEP 0508, 041 (2005) [arXiv:hep-th/0505067]. MR 2165805
[17] Howe P. S., Lindström U., Stojevic V.: Special holonomy sigma models with boundaries. JHEP 0601, 159 (2006) [arXiv:hep-th/0507035]. MR 2200283
[18] Ivanov I. T., Kim B. B., Roček M.: Complex structures, duality and WZW models in extended superspace. Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. MR 1315282
[19] Kapustin A.: Topological strings on noncommutative manifolds. Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057]. MR 2055289 | Zbl 1065.81108
[20] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249. MR 2322555 | Zbl 1192.81310
[21] Lindström U., Rocek M., van Nieuwenhuizen P.: Consistent boundary conditions for open strings. Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266]. MR 1984375 | Zbl 1027.83027
[22] Lindström U., Zabzine M.: N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models. JHEP 0302, 006 (2003) [arXiv:hep-th/0209098]. MR 1976901
[23] Lindström U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100]. MR 2065031
[24] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085]. MR 2163575 | Zbl 1118.53048
[25] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler geometry and manifest $N = (2,2)$ supersymmetric nonlinear sigma-models. JHEP 0507 (2005) 067 [arXiv:hep-th/0411186]. MR 2163246
[26] Lindström U., Rocek M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry. arXiv:hep-th/0512164. Zbl 1114.81077
[27] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. MR 1948542 | Zbl 0999.81044
[28] Pestun V.: Topological strings in generalized complex space. arXiv:hep-th/0603145. MR 2322532 | Zbl 1154.81024
[29] Sevrin A., Troost J.: Off-shell formulation of $N = 2$ non-linear sigma-models. Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102]. MR 1456119
[30] Zabzine M.: Hamiltonian perspective on generalized complex structure. arXiv:hep-th/0502137, to appear in Comm. Math. Phys. MR 2211820 | Zbl 1104.53077
[31] Zucchini R.: A sigma model field theoretic realization of Hitchin’s generalized complex geometry. JHEP 0411 (2004) 045 [arXiv:hep-th/0409181]. MR 2119918
[32] Zumino B.: Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979).
Partner of
EuDML logo