[1] Albertsson C., Lindström U., Zabzine M.:
$N = 1$ supersymmetric sigma model with boundaries. I. Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161].
MR 1962116 |
Zbl 1028.81044
[2] Albertsson C., Lindström U., Zabzine M.:
$N = 1$ supersymmetric sigma model with boundaries. II. Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069].
MR 2022994 |
Zbl 1097.81548
[3] Alekseev A., Strobl T.:
Current algebra and differential geometry. JHEP 0503 (2005), 035 [arXiv:hep-th/0410183].
MR 2151966
[4] Alvarez-Gaumé L., Freedman D. Z.:
Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Comm. Math. Phys. 80, 443 (1981)
MR 0626710
[5] Bergamin L.:
Generalized complex geometry and the Poisson sigma model. Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283].
MR 2148015 |
Zbl 1067.81046
[6] Bredthauer A., Lindström U., Persson J., Zabzine M.:
Generalized Kaehler geometry from supersymmetric sigma models. arXiv:hep-th/0603130.
MR 2260375 |
Zbl 1105.53053
[7] Bredthauer A., Lindström U., Persson J.:
First-order supersymmetric sigma models and target space geometry. JHEP 0601, 144 (2006) [arXiv:hep-th/0508228].
MR 2200293
[8] Buscher T., Lindström U., Roček M.:
New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B202, 94 (1988).
MR 0930852
[9] Calvo I.:
Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. arXiv:hep-th/0511179.
MR 2247462 |
Zbl 1105.53063
[10] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984) 157.
[11] Grisaru M. T., Massar M., Sevrin A., Troost J.:
The quantum geometry of $N = (2,2)$ non-linear sigma-models. Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218].
MR 1603804
[12] Gualtieri M.:
Generalized complex geometry. Oxford University DPhil thesis, [arXiv:math. DG/0401221].
MR 2811595 |
Zbl 1235.32020
[13] Hitchin N.:
Generalized Calabi-Yau manifolds. Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099].
MR 2013140 |
Zbl 1076.32019
[14] Hitchin N.:
Instantons, Poisson structures and generalized Kähler geometry. [arXiv:math. DG/0503432].
MR 2217300 |
Zbl 1110.53056
[15] Howe P. S., Sierra G.:
Two-dimensional supersymmetric nonlinear sigma models with torsion. Phys. Lett. B148, 451 (1984).
MR 0769268
[16] Howe P. S., Lindström U., Wulff L.:
Superstrings with boundary fermions. JHEP 0508, 041 (2005) [arXiv:hep-th/0505067].
MR 2165805
[17] Howe P. S., Lindström U., Stojevic V.:
Special holonomy sigma models with boundaries. JHEP 0601, 159 (2006) [arXiv:hep-th/0507035].
MR 2200283
[18] Ivanov I. T., Kim B. B., Roček M.:
Complex structures, duality and WZW models in extended superspace. Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063].
MR 1315282
[19] Kapustin A.:
Topological strings on noncommutative manifolds. Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057].
MR 2055289 |
Zbl 1065.81108
[20] Kapustin A., Li Y.:
Topological sigma-models with H-flux and twisted generalized complex manifolds. arXiv:hep-th/0407249.
MR 2322555 |
Zbl 1192.81310
[21] Lindström U., Rocek M., van Nieuwenhuizen P.:
Consistent boundary conditions for open strings. Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266].
MR 1984375 |
Zbl 1027.83027
[22] Lindström U., Zabzine M.:
N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models. JHEP 0302, 006 (2003) [arXiv:hep-th/0209098].
MR 1976901
[23] Lindström U.:
Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100].
MR 2065031
[24] Lindström U., Minasian R., Tomasiello A., Zabzine M.:
Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085].
MR 2163575 |
Zbl 1118.53048
[25] Lindström U., Roček M., von Unge R., Zabzine M.:
Generalized Kaehler geometry and manifest $N = (2,2)$ supersymmetric nonlinear sigma-models. JHEP 0507 (2005) 067 [arXiv:hep-th/0411186].
MR 2163246
[26] Lindström U., Rocek M., von Unge R., Zabzine M.:
Generalized Kaehler manifolds and off-shell supersymmetry. arXiv:hep-th/0512164.
Zbl 1114.81077
[27] Lyakhovich S., Zabzine M.:
Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043].
MR 1948542 |
Zbl 0999.81044
[29] Sevrin A., Troost J.:
Off-shell formulation of $N = 2$ non-linear sigma-models. Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102].
MR 1456119
[30] Zabzine M.:
Hamiltonian perspective on generalized complex structure. arXiv:hep-th/0502137, to appear in Comm. Math. Phys.
MR 2211820 |
Zbl 1104.53077
[31] Zucchini R.:
A sigma model field theoretic realization of Hitchin’s generalized complex geometry. JHEP 0411 (2004) 045 [arXiv:hep-th/0409181].
MR 2119918
[32] Zumino B.: Supersymmetry and Kahler manifolds. Phys. Lett. B 87, 203 (1979).