Previous |  Up |  Next

Article

Summary:
Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.
References:
[1] Baldoni W.: General Representation theory of real reductive Lie groups in Bailey, T. N.: Representation Theory and Automorphic Forms. Edinburgh (1996), 61–72. MR 1476492
[2] Britten D. J., Hooper J., Lemire F. W.: Simple $C_n$-modules with multiplicities 1 and application. Canad. J. Phys. 72 (1994), 326–335. MR 1297597
[3] Britten D. J., Lemire F. W.: On modules of bounded multiplicities for the symplectic algebra. Trans. Amer. Math. Soc. 351, No. 8 (1999), 3413–3431. MR 1615943
[4] Delanghe R., Sommen F., Souèek V.: Clifford Algebra and Spinor-valued Functions. Math. Appl., Vol. 53, 1992.
[5] Goodman R., Wallach N.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 2003. Zbl 1173.22001
[6] Green M. B., Hull C. M.: Covariant quantum mechanics of the superstring. Phys. Lett. B 225 (1989), 57–65. MR 1006387
[7] Habermann K.: Symplectic Dirac Operators on Kähler Manifolds. Math. Nachr. 211 (2000), 37–62. MR 1743488
[8] Humphreys J. E.: Finite and infinite dimensional modules for semisimple Lie algebras, Lie theories and their applications. Lie Theor. Appl., Proc. Ann. Semin. Can. Math. Congr., Kingston 1977 (1978), 1–64. MR 0500456
[9] Kac V. G., Wakimoto M.: Modular invariant representations of infinite dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, No. 14 (1988), 4956–4960. MR 0949675 | Zbl 0652.17010
[10] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry. Ph.D. thesis, Charles University Prague, Prague, 2001.
[11] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44, No. 1 (1978), 1–49. MR 0463359
[12] Klein A.: Eine Fouriertransformation für symplektische Spinoren und Anwendungen in der Quantisierung. Diploma Thesis, Technische Universität Berlin, Berlin, 2000.
[13] Kostant B.: On the Tensor Product of a Finite and an Infinite Dimensional Representations. J. Funct. Anal. 20 (1975), 257–285. MR 0414796
[14] Kostant B.: Symplectic Spinors. Sympos. Math. XIV (1974), 139–152. MR 0400304 | Zbl 0321.58015
[15] Krýsl S.: Invariant differential operators for contact projective geometries. Ph.D. thesis, Charles University Prague, Prague, 2004.
[16] Krýsl S.: Decomposition of the tensor product of the defining representation and a higher symplectic spinor module over $\mathfrak{sp}(2n,\mathbb{C})$. to appear in J. Lie Theory 17, No. 1 (2007), 63–72. MR 2286881
[17] Reuter M.: Symplectic Dirac-Kähler Fields. J. Math. Phys. 40 (1999), 5593–5640; electronically available at hep-th/9910085. MR 1722329 | Zbl 0968.81037
Partner of
EuDML logo