Article
Keywords:
real quadratic fields; class number; Rabinowitsch polynomials
Summary:
We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.
References:
[3] Heath-Brown D. R.:
Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992), 265–338.
MR 1143227 |
Zbl 0739.11033
[4] Rabinowitsch G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Mathematik 142 (1913), 153–164.