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Abstract. We prove that there are only finitely many positive integers m

such that there is some integer t such that |n2 + n − m| is 1 or a prime for
all n ∈ [t + 1, t +

√
m], thus solving a problem of Byeon and Stark.

In 1913, G. Rabinowitsch [4] proved that for any positive integer m with square-
free 4m−1, the class number of Q(

√
1 − 4m) is 1 if and only if n2 +n+m is prime

for all integers 0 ≤ n ≤ m − 3. Recently, D. Byeon and H. M. Stark [1] proved an
analogue statement for real quadratic fields. The polynomial fm(x) = x2 + x−m
is called a Rabinowitsch polynomial, if there is some integer t such that |fm(n)| is
1 or a prime for all integral n ∈ [t+1, t+

√
m]. They proved the following theorem:

Theorem 1. 1. If fm is Rabinowitsch, then one of the following equations hold:

m = 1, m = 2, m = p2 for some odd prime p, m = t2 + t ± 1, or m =
t2 + t ± 2t+1

3 , where 2t+1
3 is an odd prime.

2. If fm is Rabinowitsch, then Q(
√

4m + 1) has class number 1.
3. There are only finitely many m such that 4m + 1 is squarefree and that fm

is Rabinowitsch.

They asked whether the finiteness of m holds without the assumption on 4m+1.
It is the aim of this note to show that this is indeed the case.

Theorem 2. There are only finitely many m ≥ 0 such that fm is Rabinowitsch.

For the proof write 4m + 1 = u2D with D squarefree and u a positive integer.
We distinguish three cases, namely D = 1, 1 < D < m1/12 and D ≥ m1/12, and
formulate each as a seperate lemma. The first two cases are solved elementary,
while the last one requires a slight extension of the argument in the case 4m + 1
squarefree given by Byeon and Stark.

Lemma 1. If fm is Rabinowitsch and D = 1, then m = 2.
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Proof. We only deal with the case m = t2 + t + 2t+1
3 , the other cases are similar.

Assume that D = 1, that is 4t2 + 20t
3 + 7

3 = u2. We have

4t2 + 4t + 1 < 4t2 +
20t

3
+

7

3
< 4t2 + 8t + 4

that is, 2t + 1 < u < 2t + 2, which is impossible for integral t and u.

Lemma 2. There are only finitely many m such that fm is Rabinowitsch and

1 < D < m1/12.

Proof. Let p be the least prime with p ≡ 1 (mod 4D) and (p, m) = 1. By
Linnik’s theorem, we have p < DC for some absolute constant C, moreover, for
D sufficiently large we may take C = 5.5, as shown by D. R. Heath-Brown [3].
Hence, there is some constant D0 such that for D > D0 we have p < m1/2/6. By

construction of p, in any interval of length p there is some n such that x− 1+u
√

D
2

is not coprime to p, i.e. such that p divides n2 +n−m. If fm is Rabinowitsch, this
implies fm(n) = ±p, since fm is of degree 2, this cannot happen but for 4 values
of n. However, since p < m1/2/6, in every interval of length m1/2, there are at
least five such values of n, hence, fm is not Rabinowitsch.

Finally we choose a prime number pD ≡ 1 (mod 4D) for each D ≤ D0, and for
m > 6 max pD we argue as above.

Lemma 3. There are only finitely many m such that fm is Rabinowitch and that

D ≥ m1/12.

Proof. We may neglect the case m = 2. In each of the other cases, there exists a
unit ǫm in Q(

√
D) with 1 < |ǫm| ≪ m, more precisely, such a unit is given by

m = t2 : ǫm = 2t +
√

4m + 1

m = t2 + t ± 1 : ǫm =
2t + 1 +

√
4m + 1

2

m = t2 + t ± 2t + 1

3
: ǫm =

6t + 3 ± 2 + 3
√

4m + 1

2

Let ǫD > 1 be the fundamental unit of Q(
√

D). Since the group of positive units in

Q(
√

D) is free abelian of rank 1, there is some k such that ǫm = ǫk
D, hence we have

ǫD < m. By the Siegel-Brauer-theorem we have log(h(Q(
√

D)) log |ǫD|) ∼ log
√

D.

If fm is Rabinowitch, then h(Q(
√

D)) = 1, and by assumption we have

log |ǫD| ≤ log |ǫm| < log m ≤ 12 logD,

hence we obtain the inequality

12 logD > D1/2+o(1)

which can only be true for finitely many D. Since m ≤ D12, there are only finitely
many m, and our claim follows.

Note that Lemma 1 and Lemma 2 are effective, while Lemma 3 depends on a
bound for Siegel’s zero. However, one can deduce that there is an effective constant
m0, such that there exists at most one m > m0 such that fm is Rabinowitsch.
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Note added in proof. In the mean time, D. Byeon and H. M. Stark [2] also
obtained a proof of Theorem 1, moreover, they determined all Rabinowitsch poly-
nomials up to at most one exception. The same result has also been obtained
independently by S. Louboutin.
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