Previous |  Up |  Next

Article

Keywords:
$Q$-ring; almost $Q$-ring; Noetherian $Q$-ring.
Summary:
In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings.
References:
[1] Anderson D. D.: Multiplication ideals, Multiplication rings and the ring $R(X)$. Canad. J. Math. XXVIII (1976), 760–768. MR 0424794 | Zbl 0343.13009
[2] Anderson D. D.: Some remarks on multiplication ideals. Math. Japon. 25 (1980), 463–469. MR 0594548 | Zbl 0446.13001
[3] Anderson D. D.: Noetherian rings in which every ideal is a product of primary ideals. Canad. Math. Bull. 23 (4), (1980), 457–459. MR 0602601 | Zbl 0445.13006
[4] Anderson D. D., Mahaney L. A.: Commutative rings in which every ideal is a product of primary ideals. J. Algebra 106 (1987), 528–535. MR 0880975 | Zbl 0607.13004
[5] Anderson D. D., Mahaney L. A.: On primary factorizations. J. Pure Appl. Algebra 54 (1988), 141–154. MR 0963540 | Zbl 0665.13004
[6] Becerra L., Johnson J. A.: A note on quasi-principal ideals. Tamkang J. Math. (1982), 77–82. MR 0835192
[7] Heinzer W., Ohm J.: Locally Noetherian commutative rings. Trans. Amer. Math. Soc. 158 (1971), 273–284. MR 0280472 | Zbl 0223.13017
[8] Heinzer W., Lantz D.: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. MR 0634618 | Zbl 0498.13001
[9] Larsen M. D., McCarthy P. J.: Multiplicative theory of ideals. Academic Press, New York 1971. MR 0414528 | Zbl 0237.13002
[10] Levitz K. B.: A characterization of general ZPI-rings. Proc. Amer. Math. Soc. 32 (1972), 376–380. MR 0294312
[11] McCarthy P. J.: Principal elements of lattices of ideals. Proc. Amer. Math. Soc. 30 (1971), 43–45. MR 0279080 | Zbl 0218.13001
[12] Ohm J., Pendleton R. L.: Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631–639. MR 0229627 | Zbl 0172.32202
Partner of
EuDML logo