[1] Anderson D. D.:
Multiplication ideals, Multiplication rings and the ring $R(X)$. Canad. J. Math. XXVIII (1976), 760–768.
MR 0424794 |
Zbl 0343.13009
[3] Anderson D. D.:
Noetherian rings in which every ideal is a product of primary ideals. Canad. Math. Bull. 23 (4), (1980), 457–459.
MR 0602601 |
Zbl 0445.13006
[4] Anderson D. D., Mahaney L. A.:
Commutative rings in which every ideal is a product of primary ideals. J. Algebra 106 (1987), 528–535.
MR 0880975 |
Zbl 0607.13004
[5] Anderson D. D., Mahaney L. A.:
On primary factorizations. J. Pure Appl. Algebra 54 (1988), 141–154.
MR 0963540 |
Zbl 0665.13004
[6] Becerra L., Johnson J. A.:
A note on quasi-principal ideals. Tamkang J. Math. (1982), 77–82.
MR 0835192
[7] Heinzer W., Ohm J.:
Locally Noetherian commutative rings. Trans. Amer. Math. Soc. 158 (1971), 273–284.
MR 0280472 |
Zbl 0223.13017
[8] Heinzer W., Lantz D.:
The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114.
MR 0634618 |
Zbl 0498.13001
[9] Larsen M. D., McCarthy P. J.:
Multiplicative theory of ideals. Academic Press, New York 1971.
MR 0414528 |
Zbl 0237.13002
[10] Levitz K. B.:
A characterization of general ZPI-rings. Proc. Amer. Math. Soc. 32 (1972), 376–380.
MR 0294312
[11] McCarthy P. J.:
Principal elements of lattices of ideals. Proc. Amer. Math. Soc. 30 (1971), 43–45.
MR 0279080 |
Zbl 0218.13001
[12] Ohm J., Pendleton R. L.:
Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631–639.
MR 0229627 |
Zbl 0172.32202