[1] Arnold L., Kliemann W., Oeljeklaus E.:
Lyapunov exponents of linear stochastic systems. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 85–128.
MR 0850072 |
Zbl 0588.60047
[2] Arnold L., Oeljeklaus E., Pardoux E.:
Almost sure and moment stability for linear Itô equations. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 129–159.
MR 0850074 |
Zbl 0588.60049
[3] Arnold L., Imkeller P.:
Furstenberg-Khasminskii formulas for Lyapunov exponents via antecipative calculus. Stochastics and Stochastics Reports, 54 (1+2) (1995), 127–168.
MR 1382281
[4] Baxendale P. H.:
Asymptotic behavior of stochastic flows of diffeomorphisms: Two case studies. Probab. Theory Related Fields, 73 (1986), 51–85.
MR 0849065
[5] Baxendale P. H.:
The Lyapunov spectrum of a stochastic flow of diffeomorphisms. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 322–337.
MR 0850087 |
Zbl 0592.60047
[6] Borel A.:
Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. 40 (1954), 1147–1151.
MR 0077878
[7] Carverhill A. P.:
Flows of stochastic dynamical systems: Ergodic Theory. Stochastics 14 (1985), 273–317.
MR 0805125 |
Zbl 0536.58019
[8] Carverhill A. P.:
A Formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation theorem. Stochastics 14 (1985), 209–226.
MR 0800244 |
Zbl 0557.60048
[9] Carverhill A. P.:
A non-random Lyapunov spectrum for non-linear stochastic systems. Stochastics 17 (1986), 253–287.
MR 0854649
[10] Carverhill A. P., Elworthy K. D.:
Lyapunov exponents for a stochastic analogue of the geodesic flow. Trans. Amer. Math. Soc. 295 (1986), 85–105.
MR 0831190 |
Zbl 0593.58048
[11] Duistermaat J. J., Kolk J. A. C., Varadarajan V.:
Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Compositio Math. 49 (1983), 309–398.
MR 0707179 |
Zbl 0524.43008
[12] Furstenberg H., Kesten H.:
Products of random matrices. Ann. Math. Stat. 31 (1960), 457–469.
MR 0121828 |
Zbl 0137.35501
[13] Guivarc’h Y., Raugi A.:
Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahrscheinlinchkeitstheor. Verw. Geb. 69 (1985), 187–242.
MR 0779457 |
Zbl 0558.60009
[14] Helgason S.:
Differential geometry, Lie groups and symmetric spaces. Academic Press (1978).
MR 0514561 |
Zbl 0451.53038
[15] Ikeda N., Watanabe S.:
Stochastic differential equations and diffusion processes. North-Holland (1981).
MR 1011252 |
Zbl 0495.60005
[16] Khashminskii R. Z.:
Stochastic stability of differential equations. Sijthoff and Noordhoff, Alphen (1980).
MR 0600653
[17] Kobayashi S., Nomizu K.:
Foundations of differential geometry. Interscience Publishers (1963 and 1969).
MR 0152974 |
Zbl 0119.37502
[18] Liao M.:
Stochastic flows on the boundaries of Lie groups. Stochastics Stochastics Rep. 39 (1992), 213–237.
MR 1275123 |
Zbl 0754.60016
[19] Liao M.:
Liapunov Exponents of Stochastic Flows. Ann. Probab. 25 (1997), 1241–1256.
MR 1457618
[20] Liao M.:
Invariant diffusion processes in Lie groups and stochastic flows. Proc. of Symposia in Pure Math. 57 (1995), 575–591.
MR 1335499 |
Zbl 0839.58065
[21] Malliavin M. P., Malliavin P.:
Factorisations et lois limites de la diffusion horizontale au-dessus d’un espace Riemannien symmetrique. Lecture Notes Math. 404 (1974), 164–217.
MR 0359023
[22] Oseledec V. I.:
A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197–231.
MR 0240280
[23] Ruelle D.:
Ergodic theory of differentiable dynamical systems. I.H.E.S. – Publ. Math. 50, (1979), 275–306.
MR 0556581 |
Zbl 0426.58014
[24] San Martin L. A. B., Arnold L.:
A Control problem related to the Lyapunov spectrum of stochastic flows. Mat. Apl. Comput. 5 (1986), 31–64.
MR 0885003 |
Zbl 0641.93069
[25] Sussmann H., Jurdjevic V.:
Controllability of nonlinear systems. J. Differential Equations 12 (1972), 95–116.
MR 0338882
[26] Taylor J. C.:
The Iwasawa decomposition and the limiting behavior of Brownian motion on a symmetric space of non-compact type. Contemp. Math. AMS 73 (1988), 303–302.
MR 0954647
[27] Warner G.:
Harmonic Analysis on Semi-simple Lie Groups. Springer-Verlag (1972).
Zbl 0265.22021