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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 37 (2001), 207 – 231

LYAPUNOV EXPONENTS FOR STOCHASTIC DIFFERENTIAL
EQUATIONS ON SEMI-SIMPLE LIE GROUPS

PAULO R. C. RUFFINO∗ AND LUIZ A. B. SAN MARTIN∗∗

Abstract. With an intrinsic approach on semi-simple Lie groups we find a

Furstenberg–Khasminskii type formula for the limit of the diagonal compo-
nent in the Iwasawa decomposition. It is an integral formula with respect

to the invariant measure in the maximal flag manifold of the group (i.e. the
Furstenberg boundary B = G/MAN). Its integrand involves the Borel type

Riemannian metric in the flag manifolds. When applied to linear stochastic
systems which generate a semi-simple group the formula provides a diagonal

matrix whose entries are the Lyapunov spectrum. Some Brownian motions
on homogeneous spaces are discussed.

1. Introduction

In this article we consider right invariant stochastic differential equations in a
semi-simple Lie group G with the purpose of studying the asymptotic time average
of the logarithm of the A-part of the Iwasawa decomposition of the trajectories.
After constructing a convenient radial-spherical decomposition, we get an integral
formula by applying a Furstenberg-Khasminskii type argument. Interesting alge-
braic and geometrical interpretations come out of this formula when we consider
the Borel type metric on the flag manifolds.

The motivation for having such a formula is that, for many well known inter-
esting systems, that limit describes the stability of the system since it contains the
Lyapunov spectrum. Among those systems, the linear ones have been quite well
studied by several authors who developed formulae in different contexts. We men-
tion, for instance, Khasminskii [16], Arnold, Kliemann and Oeljeklaus [1], Arnold,
Oeljeklaus and Pardoux [2] for linear systems, and Carverhill [7], [8], Arnold and
San Martin [24] for extensions to nonlinear systems.
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Most of those formulae detect only the top Lyapunov exponent. A creative
method to calculate the whole Lyapunov spectrum was established by Baxendale
[5]. He used the same kind of argument for the calculation of the top exponent but
applied to the induced system on the Grassmannian Grk (n). Another approach
to find the whole spectrum is due to Arnold and Imkeller [3], who got formulae to
calculate these numbers via anticipative calculus, where each exponent is given by
a Khasminskii type formula plus a correction term which are expressed in terms
of a Malliavin derivative of the orthogonal projectors on the Osseledets spaces.

Dealing with the Iwasawa decomposition of systems in Sl(n,R), Liao [19], in a
geometrical context analogous to [5], obtained the whole spectrum as an integral
formula with respect to an invariant measure for the induced system on the special
orthogonal group. The intrinsic geometric approach of this paper allows to extend
the results in [19] to systems evolving in arbitrary semi-simple Lie groups. Here
however we work intrinsically in a general semi-simple Lie group. The link to
linear systems is established either by taking linear representations of the group
or by starting with a linear system and assuming that the Lie algebra generated
by its coefficients is semi-simple. The advantage of this intrinsic set up is that
the assumptions regarding the non-degeneracy of the systems are less demanding,
in the sense that it requires only that the Lie algebra generated by the system is
semi-simple.

The intrinsic approach also allows applications to other systems, like the ge-
odesic flow in symmetric spaces (see Malliavin and Malliavin [21] and Carverhill
and Elworthy [10]) or geodesic systems and other kinds of Brownian motions.

This article is organized as follows: in section 2 we present some algebraic
preliminaries on semi-simple Lie algebra, flag manifolds and the Borel type metric.
Section 3 shows that the homogeneous space G/MN is a trivial principal fibre
bundle over the maximal flag manifold with A as the structural group such that
there exists a spherical-radial decomposition of this space. In section 4 we study
the asymptotic behavior of solutions of stochastic differential equations in these
radial fibres. Then, we close the argument in section 5 where we show that for
many interesting systems (cf. Guivarc’h and Raugi [13]) this asymptotic behavior,
as limiting elements in a, provides the Lyapunov spectrum of the system. Finally,
in section 6 we calculate some geometrically interesting examples.

We mention that although we work in the semi-simple context, the results are
easily extended to a reductive Lie algebra, that is, which decomposes as a sum
of a semi-simple Lie algebra plus the center. At this regard recall that a Lie
algebra of matrices which is irreducible in the sense that it does not have invariant
proper subspaces, is reductive. This implies that this method applies also to linear
systems which generate an irreducible Lie algebra of matrices.

After the conclusion of this paper we became aware of similar results of Liao
[20], which also work in the general setting of semi-simple Lie groups. Contrary
to [20], here we write a formula for the Lyapunov exponent as an integral on the
flag manifolds, factoring further the formula of [20].
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2. Algebraic Preliminaries

The purpose of this section is to present some known algebraic and geometrical
facts about semi-simple Lie groups, their algebras and associated flag manifolds.
We refer to Helgason [14] or Warner [27] for unexplained concepts.

Before starting we set the following notation: ifG is a Lie group, a homogeneous
space of G is a coset space G/H with H a closed subgroup. By left translation, G
acts transitively on G/H. Let g be the Lie algebra of G and take X ∈ g. Then X

induces the vector field X̃ on G/H given by

X̃ (x) =
d

dt
(exp tX) (x)|t=0

whose flow is the action of exp (tX), t ∈ R, on G/H. When it is necessary
to emphasize the specific homogeneous space G/H the induced vector field will
be denoted by X̃

∣∣∣
G/H

. Since the action is transitive the tangent space at x is

Tx (G/H) = {X̃ (x) : X ∈ g}.

2.1. Semi-simple Lie algebras. Let g be a semi-simple Lie algebra. Given a
Cartan decomposition g = k⊕s, let θ stand for the corresponding Cartan involution
(θ = id in k and θ = −id in s). Let Π ⊂ a∗ stand for the set of roots of the pair
(g, a); the eigenvalues of adg (H), H ∈ aare 0 and α (H), α ∈ Π. The root space

gα = {X ∈ g : [H,X] = α (H)X for all H ∈ a}

is the common eigenspace for adg (H) associated with the eigenvalue α (H), α ∈ Π.
By fixing a lexicographic order in the dual a∗ of a we have Π = Π+ ∪Π− where
Π+ is the set of positive roots with respect to this order, and Π− = −Π+. The
direct sum

n+ =
∑
α∈Π+

gα

is a nilpotent subalgebra of g. We denote by a+ the Weyl chamber associated with
Π+:

a+ = {H ∈ a : α (H) > 0, α ∈ Π+} .

The choice of one among Π+, n+ or a+ determines the others. From the decom-
position of g into ad (a)-eigenspaces we have

g = n− ⊕ m⊕ a⊕ n+

where

n− = θ
(
n+
)

=
∑
α∈Π−

gα

is the subalgebra opposed to n+ and m = {X ∈ k : [X, a] = 0} is the centralizer of
a in k. A Weyl chamber a+ determines the Iwasawa decomposition:

g = k⊕ a⊕ n+ .



210 P. R. C. RUFFINO AND L. A. B. SAN MARTIN

We shall denote by pri the projection of g onto the Iwasawa component i = k, a
or n. In the particular case of sl (n,R) with the canonical Iwasawa decomposition,
k is the algebra of skew-symmetric matrices, a is the abelian algebra of diagonal
matrices and n+ the upper triangular matrices with zeros on the main diagonal.

Denote by 〈·, ·〉 the Cartan-Killing form of g. We recall the following facts (see
e.g. [14]):

• θ (gα) = g−α.
• 〈gα, gβ〉 = 0 unless β = −α.
• The bilinear form in g defined by Bθ (X,Y ) = −〈X, θY 〉 is an inner product.

In particular, the restriction of 〈·, ·〉 to s is an inner product and for every
0 6= X ∈ gα, 〈X, θX〉 6= 0.

2.2. Flag Manifolds. Let G be a connected and noncompact semi-simple Lie
group with Lie algebra g. An Iwasawa decomposition g = k ⊕ a ⊕ n+ extends
to an Iwasawa decomposition G = KAN where the groups K, A and N are the
exponentials of k, a and n+ respectively.

Let M be the centralizer of A in K. The Lie algebra of M is the centralizer
m of a in k. The product P = MAN is a closed subgroup of G with Lie algebra
p = m ⊕ a ⊕ n+. The subgroup P is the normalizer of p in G . It is a minimal
parabolic subgroup and the quotient B = G/P is a compact homogeneous space
of G known as the maximal flag manifold or the Furstenberg boundary of G. The
subgroup K also acts transitively on B. Through the transitive action of K we
have B = K/M . We remark that B is the same, regardless the specific G having
Lie algebra g. This is due to the fact that M contains the center of G so that the
action of G on B factors through the group of inner automorphisms of g which is
centerless.

For the construction of the non maximal flag manifolds we need the simple
system of roots Σ associated to Π+. This is a basis of a∗ such that every α ∈ Π+

is a linear combination of Σ with nonnegative integers as coefficients.
Given Θ ⊂ Σ let 〈Θ〉 be the subset of positive roots generated by Θ. Denote

by n− (Θ) the subalgebra spanned by the root spaces g−α, α ∈ 〈Θ〉 and let pΘ be
the parabolic subalgebra defined by

pΘ = n− (Θ) ⊕ p .

Its normalizer PΘ in G is a parabolic subgroup whose Lie algebra is pΘ. We
put BΘ = G/PΘ for the corresponding flag manifold. If MΘ = PΘ ∩ K then
BΘ = K/MΘ, that is, K is transitive in BΘ. It turns out that MΘ is the centralizer
in K of any H in the “subchamber”

{H ∈ cl
(
a+
)

: α (H) = 0 if α ∈ 〈Θ〉 and α (H) > 0 if α ∈ Π+ − 〈Θ〉} .

By this transitivity of K, BΘ identifies with the Ad (K)-orbit of H in s. In this
case the notation BH and MH are also used instead of BΘ and MΘ respectively.
The Lie algebra of MH is the centralizer mH of H in k:

mH = {X ∈ k : [X,H] = 0}.
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A relation between the Iwasawa and Cartan components is provided by the fol-
lowing simple algebraic lemma, which generalizes the symmetrization and skew-
symmetrization of matrices.

Lemma 2.1. Let a+, and hence n+ be given.
(1) Define ka+ = {Y + θ (Y ) : Y ∈ n+}. Then ka+ ⊂ k and k = ka+ ⊕ m.

Moreover, the skew-symmetrization map

χ : Y ∈ n+ 7−→ Y + θ (Y ) ∈ ka+

is an isomorphism of vector spaces.
(2) Define sa+ = {Y − θ (Y ) : Y ∈ n+}. Then sa+ ⊂ s and s = sa+ ⊕ a.

Moreover, the symmetrization map

σ : Y ∈ n+ 7−→ Y − θ (Y ) ∈ sa+

is an isomorphism of vector spaces.

Proof. To see item (1) note that k is the subspace of points fixed by θ so that
ka+ ⊂ k. We have k ⊂ n− ⊕ m ⊕ n+. Hence X ∈ k is written uniquely as X =
Z + A+ Y , with Z ∈ n−, A ∈ m and Z ∈ n+. Then

X = θ (X) = θ (Z) +A + θ (Y )

with θ (Z) ∈ n+and θ (Y ) ∈ n−. Therefore θ (Y ) = Z so that X = (Y + θ (Y )) +
A ∈ ka+ ⊕ m. The isomorphism is a consequence of the fact that for Y ∈ n+,
Y + θ (Y ) = 0 if and only if Y = 0.

Item (2) follows in the same way: s ⊂ n− ⊕ a ⊕ n+ and consider Y − θ (Y )
instead of Y + θ (Y ).

With the isomorphisms χ and σ of this lemma we construct the isomorphism

ζ = σ ◦ χ−1 : ka+ → sa+ ,

which extends to k by declaring it to be zero at m.
For H ∈ a the flag manifold BH is the Ad (K)-orbit of H so that its tangent

space at H is

THBH = {X̃ (H) = [X,H] : X ∈ k} ⊂ s .

Clearly [mH , H] = 0. Hence THBH is the subspace of tangent vectors X̃ (H) with
X running through the subspace χ (nH) where

nH =
∑
{gα : α ∈ Π+, α (H) 6= 0} .(1)

An easy computation shows that THBH , as a subspace of s, coincides with σ (nH)
so that it is the orthogonal complement of ζ (mH).

Later on we will use the following facts relating the isomorphism σ : n+ → sa+

with the Cartan-Killing form: If Y ∈ gα, α > 0 then σY = Y − θY , and since
〈Y, Y 〉 = 0,

〈σY, σY 〉 = 〈Y − θY, Y − θY 〉 = 2Bθ (Y, Y ) .
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Also, if Z ∈ gβ, with α 6= β > 0 then 〈Y, Z〉 = 〈Y, θZ〉 = 〈θY, θZ〉 = 0 so that
〈σY, σZ〉 = 0. From this fact we can construct orthonormal bases of s as follows:
take a basis {Y1, . . . , Ym} of n+ which is the union of bases of the root spaces gα,
α > 0. Then {σY1, . . . , σYm} is a basis of sa+ which can be complemented with
a basis of a to get a basis of s . Any such basis will be called adapted to a+. In
particular, if {Y1, . . . , Ym} is orthonormal with respect to the inner product Bθ
then

{
√

2
2
σY1, . . . ,

√
2

2
σYm}(2)

is orthonormal in sa+ which can be complemented to an orthonormal basis of s.

2.3. Borel metric. It is possible to endow a flag manifold with a special Rie-
mannian metric which depends on its realization as an Ad (K)-orbit, namely the
Borel (B) metric (see Borel [6] and Duistermmat, Kolk and Varadarajan [11]). For
the definition of the B metric take H ∈ cl (a+). Then at the tangent space THBH

the B metric is given by(
X̃ (H) , Ỹ (H)

)
H

= 〈H, [X, ζ (Y )]〉(3)

for X,Y ∈ k. This expression actually defines an inner product in THBH which
is invariant under MH so that it extends to a K-invariant Riemannian metric in
BH . This metric will play an essential role in the sequel for the computation of
the Lyapunov exponents.

A crucial fact about the B metric is that the vector fields induced by s are
gradient. More precisely, for X ∈ s let X̃ be the vector field it induces in BH
through the G-action in this flag manifold. Since BH is embedded in s, it makes
sense to define the function fX : BH → R by fX (Y ) = 〈X,Y 〉.

Lemma 2.2. For any X ∈ s, X̃ = gradfX where the gradient is taken with respect
to B, that is, d (fX) =

(
X̃, ·

)
.

Proof. See Proposition 3.3 in [11].

The right hand side of equation (3) is linear in H showing that the B metric
changes linearly with H. The exact meaning of this linear dependence is as follows:
fix t > 0 and put H1 = tH. The centralizers of H and H1 in K coincide so that
BH1 = BH , that is, both orbits Ad (K)H1 and Ad (K)H identify with the same
homogeneous space of K. Under these identifications H1 and H give the same
base point. The vector field X̃ is defined by means of the K-action and it is
independent of the specific realization. From (3) we see that the B metric defined
by H1 is t times the metric defined by H.

Another aspect about the B metric which needs to be discussed concerns its
values on the vectors of s which are tangent to Ad (K)H at H. Any such vector
is of the form σ (A) with A ∈ nH , defined in (1). We have,
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Lemma 2.3. Let α > 0 be a root such that α (H) 6= 0. Let A ∈ gα and view
σ (A) ∈ s as a tangent vector to Ad (K)H at H. Then

(σ (A) , σ (A))H =
1

α (H)
〈σ (A) , σ (A)〉 .

Moreover, if β 6= α is another positive root and B ∈ gβ then (σ (B) , σ (A))H = 0.

Proof. Let χ be the isomorphism of Lemma 2.1 and put X = − 1
α(H)χ (A). Direct

computations show that

(σ (A) , σ (A))H =
(
X̃, X̃

)
H

= 〈H, [X, ζX]〉
= 〈[H,X], ζX〉 = 〈−σ (A) , ζX〉
= 1

α(H)
〈σ (A) , σ (A)〉 .

The orthogonality between σ (A) and σ (B) follows if we perform the computations
with ζY instead of ζX where Y = − 1

β(H)χ (B).

This lemma has the following interesting consequence: suppose that H is such
that α (H) = 1 for every positive root α such that α (H) 6= 0. Then the B metric
in BH is just the metric induced by its immersion in s. When this happens we
say that BH is an immersed flag manifold.

For later reference we include here the computation of the B metric in the vector
fields induced by the elements in s.

Lemma 2.4. Take H ∈ cl (a+) and denote by x0 the origin of BH . Let α be a
positive root. For X ∈ gα put S = σ (X). Then∣∣∣S̃ (x0)

∣∣∣2 = α (H) 〈σ (X) , σ (X)〉 .

Moreover, if β 6= α is another positive root and Y ∈ gβ then
(
σ̃ (X), σ̃ (Y )

)
H

= 0.

Proof. At H the vector field σ̃ (X) is equal to (prkσ (X))∼. We have

σ (X) = X − θ (X) = (−X − θ (X)) + 2X .

The right hand side of this equality is the Iwasawa decomposition of σ (X) because
−X−θ (X) ∈ k and 2X ∈ n+. Hence prkσ (X) = − (X + θ (X)). Since ζ (σ (X)) =
X − θ (X), a similar formula for Y yields(

σ̃ (X), σ̃ (Y )
)
H

= 〈H, [X + θ (X) , Y − θ (Y )]〉 .

Now the Cartan-Killing form is invariant under the adjoint representation so that(
σ̃ (Y ), σ̃ (Y )

)
H

= 〈[H,X + θ (X)], Y − θ (Y )〉 .

But [H,X] = α (H)X and [H, θ (X)] = −α (H)X because X ∈ gα and θ (X) ∈
g−α. Since gα + g−α is orthogonal to gβ + g−β if β 6= α, this implies the second
statement. On the other hand,∣∣∣σ̃ (X) (x0)

∣∣∣2 = α (H) 〈X − θ (X) , X − θ (X)〉
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as claimed.

3. Decomposition of G/MN

In this section we show that the homogeneous space G/MN is a trivial principal
fiber bundle over the maximal flag manifold B such that the structural group is
the A part of the Iwasawa decomposition G = KAN , i.e., there exists a kind
of spherical-radial decomposition of this space. In the next subsections we study
the asymptotic behavior of the trajectories in the fibers, so we find the Lyapunov
spectrum in the entries of limiting elements in A.

The product L = MN ⊂ P is a closed subgroup which is normal in P because
A normalizes N and M . Consider the canonical fibration

π : gL ∈ G/L 7−→ gP ∈ G/P
whose fiber is A = P/L. Since L is normal in P it turns out that G/L is a principal
bundle over G/P with A as structural group. The right action of A on G/L is
given by Rh (gL) = gLh = ghL, h ∈ A. It is clear that for any g ∈ G, gRh = Rhg.
Also, π is equivariant with respect to the actions of G on G/L and G/P in the
sense that πg = gπ. The next proposition shows that the above principal bundle
is trivial:

Proposition 3.1. The map

φ : (uM, h) ∈ (K/M )× A 7−→ uhL ∈ G/L .(4)

is a diffeomorphism between G/L and B×A. Its inverse φ−1 maps gL ∈ G/L in
(uM, h) ∈ K/M ×A where g = uhn is the Iwasawa decomposition of g. Moreover,
φ is a bundle map in the sense that φ (b, Ra1 (a)) = Ra1φ (b, a) for all (b, a) ∈ B×A
and a1 ∈ A.

Proof. Note that, by (4), φ does not depend on the representative u ∈ K because
if m ∈ M and h ∈ A then umhL = uhmL = uhL . Let ψ be the map uhL 7→
(uM, h); we claim that ψ is the inverse of φ. Firstly we check that ψ is also well
defined: let g = uhn and suppose that g1 = u1h1n1 is in the coset gL, i.e.

n−1h−1u−1u1h1n1 ∈ L .
Since N ⊂ L it follows that h−1u−1u1h1 ∈ L ⊂ P . Hence u−1u1 ∈ P ∩K = M .
So that u−1u1 commutes with h−1 and hence u−1u1h

−1h1 ∈ L which implies that
h−1h1 ∈ L∩A = {1}. Therefore h1 = h and uM = u1M showing that ψ is well de-
fined. The composition φψ is the identity because if g = uhn then gL = uhL. On
the other hand, ψφ (uM, h) = (uM, h) because uh is already written in Iwasawa
decomposition. Since φ and ψ are differentiable we conclude that φ is a diffeo-
morphism between G/L and B×A. It is a bundle map because A normalizes L.

This decomposition has an evident meaning as a polar decomposition with B
playing the role of the spherical component while A is the radial component. Also,
by identifying G/L with B × A through φ, the A-component of gL becomes the
A-component of the Iwasawa decomposition of g.
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3.1. Vector Fields. We look now at the behavior of vector fields in G/L under
the above decomposition. Recall that the g-translation of X̃ is given by the adjoint
in g:

g∗X̃ = (Ad (g)X)∼ .(5)

The vector field induced by X on G/L is right invariant under h ∈ A, i.e., Rh∗X =
X because the action of G on G/L commutes with the right action of A. Also,
taking the decomposition G/L = B×A and considering the trivial connection on
this bundle, X decomposes as

X (b, h) = XH (b, h) + XV (b, h)

where XH is the horizontal component (in the direction of B) while XV stands for
the vertical component (in the direction of A). We shall find explicit expressions
for these components.

The horizontal component is just the vector field induced by X on B. In fact,
the projection

π : G/L −→ G/P

is equivariant which implies that π∗ X̃
∣∣∣
G/L

= X̃
∣∣∣
G/P

. Since π∗XV = 0 it follows

that π∗ X̃
∣∣∣
G/L

= XH . Therefore XH (b, h) = XH (b) is independent of h ∈ A and

coincides with the vector field induced by X on B.
In order to get the vertical component we denote by H∗ the vertical vector field

induced in B × A by H ∈ a as an element of the Lie algebra of the structural
group, hence, now the action is on the right. For every vertical vector v at (b, h)
there exists H ∈ a such that v = H∗ (b, h). Hence with a given X ∈ g we have
defined a map b ∈ B 7→ HX,b ∈ a such that

X (b, 1) = XH (b) +H∗X,b (b, 1) .

From this equality we can obtain the vertical component. In fact, X is right
invariant, i.e., X (b, h) = Rh∗X (b, 1). Now

Rh∗
(
XH (b) + H∗X,b (b, 1)

)
= XH (b) +Rh∗

(
H∗X,b (b, 1)

)
= XH (b) +

(
Ad
(
h−1

)
HX,b

)∗ (b, h) .

Since A is abelian Ad
(
h−1

)
H = H, hence

X (b, h) = XH +H∗X,b (b, h)

i.e. the vertical component is determined by HX,b ∈ a which depends only on X
and on b. We will find an explicit expression for this map. Consider the Iwasawa
decomposition g = k⊕a⊕n and let b0 = P be the origin of B. Since N is contained
in the isotropy subgroup at (b0, 1), the n-component of X becomes zero at this
point. Under the diffeomorphism φ the horizontal component X̃

∣∣∣
G/P

(b0) is given

by (prk)
˜
∣∣∣
G/P

and the vertical component is given by (pra)˜
∣∣∣
A

. Hence, since a is

abelian, HX,b0 = praX.
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For the values of HX,b at other points of B, take u ∈ K and put b = ub0. Then,
by equation (5) and the fact that u∗H∗ = H∗ we have:

X̃ (b, 1) = u∗
((

Ad
(
u−1

)
X
)∼ (b0, 1)

)
= u∗

((
Ad
(
u−1

)
X
)∼∣∣

G/P
(b0)

)
+ u∗H

∗
Ad(u−1)X,b0

(b0, 1)
= XH (b0) +H∗Ad(u−1)X,b0

(b, 1) .

So, XV (b, 1) = H∗Ad(u−1)X,b0
(b, 1), and we get for b = ub0, u ∈ K the desired

expression of HX,b:

HX,b = HAd(u−1)X,b0 = pra

(
Ad
(
u−1

)
X
)
.

The group A is diffeomorphic to its Lie algebra a through the exponential map.
Hence G/L is also diffeomorphic to B × a and there is a decomposition of the
vector fields at this level too. We have then:

Proposition 3.2. The differential equation induced in G/L = B × a by X ∈ g
decomposes into the equations

db
dt = X̃

∣∣∣
G/P

(b) , with b ∈ B and

dH
dt

= pra

(
Ad
(
u−1

)
X
)

where b = ub0 and H ∈ a

Proof. We only remark that the second equation means that if at = expH(t) ∈ A
then ȧt = pra

(
Ad
(
u−1

)
X
)
at.

In the following sections it will be convenient to use the notation

qX (b) = pra

(
Ad
(
u−1

)
X
)
∈ a(6)

with X ∈ g, b = ub0 where u ∈ K. Note that (6) does not depend on the
representative u ∈ K which satisfies ub0 = b. In fact, if u1b0 = b then u1 = um
for some m ∈M , and pra ◦Ad (m) = pra because m centralizes a.

4. Stochastic Differential Equations

Consider the stochastic differential equation on the semi-simple Lie group G:

dg = X (g) dt+
m∑
i=1

Y i (g) ◦ dWi .(7)

We shall assume the accessibility property of this system which means that X
and Y 1, . . . , Y m generate the Lie algebra g of G. As in the case of vector fields
this equation induces stochastic equations in the homogeneous spaces of G, in
particular in G/L. By the preceding section, there is a decomposition of the
process in G/L into radial and spherical components. In fact, using Itô’s formula
the induced equation in B× a has the components

db = XH (b) dt+
m∑
i=1

Y iH (b) ◦ dWi(8)
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in the direction of B and

dH = qX (b) dt+
m∑
i=1

qY i (b) ◦ dWi(9)

in the direction of a. Let gt be the solution of (7 ) starting at the identity 1 ∈ G.
Write gt = uthtnt for its Iwasawa decomposition and put Ht = loght. Then Ht is
driven by equation (9). In order to describe the asymptotic behavior of Ht it will
be convenient to convert the Stratonovich equation (9) in Itô form:

dH = qX (b) dt+
1
2

m∑
i=1

rY i (b) dt+
m∑
i=1

qY i (b) dWi(10)

where rZ for Z ∈ g stands for the directional derivative:

rZ (b) = (ZH · qZ) (b) .

We will find an expression for rZ by reducing the computation of the derivative
at the origin b0 ∈ B. Given b ∈ B let u ∈ K be such that b = ub0. Then

rZ (b) = d (qZ)b (ZH (b))
= d (qZ)b ◦ dub0 ◦ du

−1
b (ZH (b))

with u viewed as a diffeomorphism u : B→ B. Hence:

rZ (b) = d (qZ ◦ u)b0
(
du−1

b (ZH (b))
)
.

Now, from (5), du−1
b (ZH (b)) is the vector field induced on B by Ad

(
u−1

)
Z at

b0, i.e.,

rZ (b) = d (qZ ◦ u)b0
((

Ad
(
u−1

)
Z
)∼

(b0)
)
.(11)

We recall from the previous section that at the origin b0 of B, given X ∈ g,
X̃ (b0) = (prkX)˜ (b0) (because a + n is contained in the isotropy subalgebra at
b0). Hence, if we denote

W (u) = prk Ad
(
u−1

)
Z ,

then

rZ (b) =
d

dt
(qZ ◦ u)

(
etW (u)b0

)
|t=0

,

which by the definition of qZ becomes:

rZ (b) =
d

dt
pra

(
Ad
(
e−tW (u)u−1

)
Z
)
|t=0

.

A direct calculation shows that

rZ (b) = pra[Ad
(
u−1

)
Z,W (u)] .

Summarizing, we have the following formula:

Proposition 4.1. If Z ∈ g and b = ub0 ∈ B with u ∈ K then

rZ (b) = pra[Ad
(
u−1

)
Z , prk Ad

(
u−1

)
Z]
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4.1. The Integral Formula. The assumption that {X, Y 1, . . . , Y m} generates
g guarantees that in each compact homogeneous space of G there exists a unique
(ergodic) invariant probability measure for the diffusion process which is the so-
lution of the induced stochastic differential equation. In particular there exists a
unique invariant probability measure ν on the maximal flag manifold for the pro-
cess in this space. Applying the ergodic theorem to the skew-symmetric flow (see
e.g. Arnold, Kliemann and Oeljeklaus [1] or Carverhill [7]) we have the following
well known special case of the Law of Large Numbers:

lim
t→∞

1
t

log at = lim
t→∞

1
t

∫ t

0

Q(bs) ds =
∫

B

Q(b)ν (db) for ν ⊗ P-almost every (b, ω)

where the function Q : B→ a is given by:

Q (b) = qX +
m∑
i=1

rY i (b)(12)

with qX (b) = pra

(
Ad
(
u−1

)
X
)

and rY i (b) = pra[Ad
(
u−1

)
Y i, prkAd

(
u−1

)
Y i]

where b = ub0.

4.2. The Integrand. We shall find an expression for the quadratic part rZ (b),
Z ∈ g, of the integrand in terms of the B metric.

The restriction of the Cartan-Killing form 〈·, ·〉 to a is an inner product so that
we determine rZ (b) if we compute 〈H, rZ (b)〉 for every H in a basis of a. In other
words, we must calculate

〈H, rZ (b)〉 = 〈H, pra[Ad
(
u−1

)
Z, prkAd

(
u−1

)
Z]〉

for generic H ∈ a. Under the Cartan-Killing form k and n+ are orthogonal to a so
that

〈H, rZ (b)〉 = 〈H, [Ad
(
u−1

)
Z, prkAd

(
u−1

)
Z]〉 .(13)

Note first that if Z ∈ k then Ad
(
u−1

)
Z ∈ k. Hence prkAd

(
u−1

)
Z coincides with

Ad
(
u−1

)
Z so that (13) vanishes trivially.

On the other hand for Z ∈ s we can relate 〈H, rZ (b)〉 with the B metric (·, ·)
in BH .

Lemma 4.2. If Z ∈ s then

〈H, [Z, prkZ]〉 = ((prkZ)∼ , (prkZ)∼)H(14)

where (prkZ)∼ means the vector field on BH induced by prkZ.

Proof. By Lemma 2.1 there are Y ∈ n+ and H ′ ∈ a such that

Z = Y − θ (Y ) +H′ = (−Y − θ (Y )) + H′ + 2Y .

The right hand side of this equality is the Iwasawa decomposition of Z because
−Y − θ (Y ) ∈ k, H′ ∈ a and Y ∈ n+. Hence

prkZ = −Y − θ (Y ) ,
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and

[Z, prkZ] = [Y − θ (Y ) , prkZ] + [H ′, prkZ] .(15)

The term [H ′, prkZ] is orthogonal to H so that it does not contribute to (14). In
fact, prkZ = −Y − θ (Y ) belongs to n− + n+ and this subspace is orthogonal to
a and invariant under ad (a). On the other hand, the first term in the right hand
side of (15) is −[ζ (prkZ) , prkZ]. The Cartan-Killing product of this term with H
is by definition ((prkZ)∼ , (prkZ)∼)H , proving the lemma.

The right hand side of (14) can be given an interpretation in terms of the G-
action on BH : For X ∈ g let as before X̃ stand for the vector field induced by X
on BH . If x0 ∈ BH corresponds to H then a + n+ is contained in the isotropy
subalgebra at x0. Hence for X ∈ g,

X̃ (x0) = (prkX)∼ (x0) .

Therefore we have

Corollary 4.3. For Z ∈ s it holds

〈H, [Z, prkZ]〉 = (Z̃ , Z̃)x0 =
∣∣∣Z̃ (x0)

∣∣∣2 .
Using K-invariance we can transport this formula to every point of BH .

Corollary 4.4. If Z ∈ s then

〈H, rZ (b)〉 = (Z̃, Z̃)ux0

where (·, ·) is the B metric in BH . Here u and b are related by b = ux0 and x0 is
the origin of BH.

Proof. Put U = Ad
(
u−1

)
Z. By definition of rZ and the above lemma,

〈H, rZ (b)〉 =
∣∣∣Ũ (x0)

∣∣∣2
with the norm given by the B metric in BH . However,

Ũ (x0) =
(
Ad
(
u−1

)
Z
)∼ (x0) = u−1

∗ (Z (ux0)) .

Since the metric is K-invariant it follows that∣∣∣Ũ (x0)
∣∣∣2 =

∣∣∣u−1
∗

(
Z̃ (ux0)

)∣∣∣2 =
∣∣∣Z̃ (ux0)

∣∣∣2
as claimed.

In general, let Z = A + S with A ∈ k and S ∈ s and for u ∈ K put Zu =
Ad
(
u−1

)
Z, Au = Ad

(
u−1

)
A and Su = Ad

(
u−1

)
S. Then Zu = Au + Su.

Plugging this into formula (13) and taking into account that [k, k] ⊂ k is orthogonal
to H we get

〈H, rZ (b)〉 = 〈H, [Su, Au]〉+
∣∣∣S̃ (ux0)

∣∣∣2
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where b = ub0. Now,

Su =
Zu − θZu

2
, Au =

Zu + θZu
2

and Ad (u) commutes with θ. Hence there is the following expression for 〈H, rZ (b)〉,
which holds for arbitrary Z.

Proposition 4.5. If Z ∈ g and H ∈ a then

〈H, rZ (b)〉 =
1
2
〈H, [Ad (u)Z,Ad (u) (θZ)]〉+

∣∣∣S̃ (ux0)
∣∣∣2

where b = ub0 and b0 and x0 are the origins in the flag manifolds B and BH
respectively.

5. Lyapunov Exponents

The right invariant stochastic differential equation (7) on G induces a stochastic
differential

dx = X̃ (x) +
m∑
i=1

Ỹ i (x) ◦ dWi

on each space endowed with a G action. For many of the induced systems their
Lyapunov exponents are described by the asymptotic of the A-part in the Iwa-
sawa decomposition. We present below two classical situations covered by this
construction, namely the linear systems induced by representations of the group
and, secondly, Brownian motions in flag manifolds and symmetric spaces.

5.1. Linear Systems. Let ρ : G → Gl (d,R) be a representation of G in R d.
It induces a representation of g (also denoted by ρ) so that the right invariant
vector fields in G are mapped into linear vector fields in Rd. Therefore, under
the representation, the system given by equation (7) is mapped into the linear
differential equation:

dx = ρ (X)xdt+
m∑
i=1

ρ
(
Y i
)
x ◦ dWi x ∈ Rd .(16)

The relation between the systems (7) and (16) is that if xt is the solution of (16)
starting at x0 then xt = ρ (gt)x0 where gt is the solution of (7) starting at the
identity. Clearly, ρ (gt) is the solution of a right invariant differential equation in
the Lie group ρ (G), image of (7) under ρ. Every data about (16) is contained in
this image system and not in G itself. Since we are primarily interested in (16) we
assume from now on that ρ is a faithful representation. This amounts to assume
that G is a linear group and ρ is just the inclusion of G into the general linear
group. Alternatively we may start with a linear system and make the assumption
that the Lie algebra generated by the coefficients is a semi-simple subalgebra of
matrices.
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Our purpose here is to sketch a proof of the easily suspected fact that the A-part
in the Iwasawa decomposition gives, through the representation, the Lyapunov
exponents of (16)

lim
t→+∞

1
t

log ||xt|| .(17)

There are certainly different ways to prove this fact. All of them require some
regularity property of the system. For our systems the regularity comes from
the accessibility property, i.e., the assumption that the coefficients of the system
generate g.

To find the Lyapunov exponents of equation (16) we use the theory of Guivarc’h
and Raugi [13]. The first thing to do is to change our continuous-time system into
a discrete-time one. This is easily achieved by taking the solution gt of (7) starting
at the identity at time 1. Let µ be the law of g1. Then the law of gk is the k-th
convolution power µ?k. Also, the flow property of gt implies that for a random
element

gk (ω) = g1 (θk−1 (ω)) · · ·g1 (θ (ω)) · g1 (ω)(18)

where θ is the shift in probability space. Therefore, in a convenient probability
space, gk can be regarded as a product of an i.i.d. sequence of random elements
in G. On the other hand the limit in (17) can be discretized with the same
results, that is, the Lyapunov exponents of the sequence ρ (gn) of random matrices
coincides with the Lyapunov exponents of the system (16) (see Carverhill [7] for
further discussions about the continuous vs. discrete-time stochastic systems).

With this in mind we observe that the support suppµ of µ has nonempty interior
in G. In fact, by the support theorem suppµ = cl (A (1)), where A (1) is the
attainable set from the identity in G, at time 1, of the right invariant control
system in G obtained from (7 ):

ġ = X (g) +
m∑
i=1

ui (t)Y i (g)

with ui (t) piecewise constant controls (see e.g. Ikeda and Watanabe [15]). A
general result of Sussmann and Jurdjevic [25] says that the attainable set of an
analytic control system at a fixed time has nonvoid interior inside the leaf of a
certain integrable distribution of codimension zero or one in the state space. An
application of this result to a right invariant control system on a Lie group proves
that A (1) has nonvoid interior in a coset of a connected normal subgroup H ⊂ G
with codimension zero or one. Since we are working with a semi-simple Lie group,
there are no normal subgroup of codimension one. Hence H = G and suppµ has
nonvoid interior in G.

This fact ensures that the probability measure µ and the corresponding random
product are under the basic assumptions of [13], namely that the semigroup Tµ
generated by suppµ is contracting and strongly irreducible.

Consider now the Iwasawa decomposition of the product (18)

gk (ω) = un (ω)hk (ω) nk (ω) ∈ KAN .
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Write also the polar decomposition

gk (ω) = xk (ω) ak (ω) yk (ω) ∈ KĀ+K ,(19)

where Ā+ stands for the exponential of the closure of a Weyl chamber in a. By
[13, Cor. 2.8] hk (ω) a−1

k (ω) converges almost surely so that

lim
1
k

loghk = lim
1
k

logak .

At this point we need the following well known fact about Cartan decomposi-
tions of Lie algebras and subalgebras (see e.g. [14], [27]):

Lemma 5.1. Let g ⊂ g̃ be noncompact semi-simple Lie algebras and consider a
Cartan decomposition g = k ⊕ s of g. Then there exists a Cartan decomposition
g̃ = k̃ ⊕ s̃ such that k ⊂ k̃ and s ⊂ s̃. Also, if a ⊂ s is maximal abelian then there
exists a maximal abelian ã ⊂ s̃ such that a ⊂ ã.

The compatible Cartan decompositions extend to the group level: Let G ⊂ G̃
be semi-simple Lie groups with Lie algebras g ⊂ g̃. A Cartan decomposition G =
KS comes from a Cartan decomposition of g, through the exponential mapping.
Hence there exists a Cartan decomposition G̃ = K̃S̃ such that K ⊂ K̃ and S ⊂
S̃. We can apply this fact to our linear group G. Since G is semi-simple it is
contained in Sl (d,R) so that a Cartan decomposition G = KS extends to a Cartan
decomposition of Sl (d,R). This means that there is an inner product of R d such
that with respect to it the elements of K are orthogonal matrices and those of
S are symmetric and positive definite. The same way for a polar decomposition
G = KĀ+K there is a group Ã of diagonal matrices in Sl (d,R) containing A.
We remark that it is not true in general that Ā+ is contained in a unique Weyl
chamber of Ã. Given the decomposition (19) of gk (ω) , the eigenvalues of

λ = lim
1
2k

log
(
gk (ω) gk (ω)∗

)
are exactly the eigenvalues of lim 1

k log ak (ω), which coincides with our previously
defined Lyapunov exponent matrix. By the approach in Ruelle [23], the eigenvalues
of λ are the Lyapunov exponents of our system (16).

We state now these facts using the language of representation theory. Let
ρ : g→ gl (V ) be a representation of the semi-simple Lie algebra in the real vector
space V . If a ⊂ g has the same meaning as before, a linear functional λ : a → R
is said to be a weight of the representation if the weight space

Vλ = {v ∈ V : ρ (H) v = λ (H) v for all H ∈ a}

is not zero. If H ∈ a then ρ (H) is diagonalizable and its eigenvalues are λ (H)
with λ running through the set of weights. With this terminology we have the
formula:

Theorem 5.2. Assume that the right invariant system (7) in G satisfies the ac-
cessibility property. Consider the linear differential equation (16) induced by the
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representation ρ. Then the Lyapunov exponents of (16) are the entries of

ρ

(∫
Q (b) ν (db)

)
,

which are λ
(∫
Q (b) ν (db)

)
with λ running through the weights of the representa-

tion. Here Q is given by (12) and ν is the unique invariant probability measure in
the maximal flag manifold of G.

5.2. Systems with Symmetric Vector Fields. Consider a system

dg =
m∑
i=1

Y i (g) ◦ dWi(20)

without drift such that {Y 1, . . . , Y m} is an orthonormal basis of s. Under the
inverse mapping of G the right invariant vector field Y i is mapped into the left
invariant vector field whose value at the identity is −Y i. It was proved by Malliavin
and Malliavin [21] that the left invariant system thus obtained is the horizontal
diffusion in the symmetric space G/K (see also Liao [18] and Taylor [26]). In our
computations below we shall recover a result of [21] on the limit behavior of the
A-part of the Iwasawa decomposition of the horizontal diffusion.

For the system (20) the integrand in the formula (12) becomes

Q (b) =
1
2

m∑
i=1

rY i (b) .

By Corollary 4.4 if H ∈ a then

〈H,Q (b)〉 =
m∑
i=1

∣∣∣Ỹ i (ux0)
∣∣∣2(21)

with b = ub0 and the norm is with respect to B metric in BH . We shall com-
pute this expression explicitly. Firstly note that the right hand side of (21) is
independent of the orthonormal basis, in fact:

Lemma 5.3. Let
(
Y i
)
i=1,... ,m

and
(
Zi
)
i=1,... ,m

be orthonormal bases of s. Then

m∑
i=1

∣∣∣Ỹ i (ux0)
∣∣∣2 =

m∑
i=1

∣∣∣Z̃i (ux0)
∣∣∣2

for all u ∈ K.

Proof. Let aij ∈ R, i, j = 1, . . . ,m, be such that

Zi =
∑

aijY
j .

Since the restriction to s of the Cartan-Killing form is an inner product, the m×m
matrix

(
aij
)
i,j

is orthogonal. Hence

m∑
i=1

∣∣∣Z̃i (ux0)
∣∣∣2 =

m∑
i,j=1

(
aij
)2 ∣∣∣Ỹ j (ux0)

∣∣∣2 +
m∑
i

m∑
j 6=k

aija
i
k

(
Ỹ j (ux0) , Ỹ k (ux0)

)
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shows the lemma.

Corollary 5.4. If
(
Y i
)
i=1,... ,m

is an orthonormal basis of s then
∑m
i=1

∣∣∣Ỹ i (ux0)
∣∣∣2

is independent of u ∈ K.

Proof. The translation formula for vector fields in a homogeneous spaces yields

Ỹ (ux0) = u∗
(
Ad
(
u−1

)
Y i
)∼

(x0) .

Hence
m∑
i=1

∣∣∣Ỹ i (ux0)
∣∣∣2 =

m∑
i=1

∣∣(Ad
(
u−1

)
Y i
)∼

(x0)
∣∣2 .

By the previous lemma the right hand side is equal to
∑m
i=1

∣∣∣Ỹ i (x0)
∣∣∣2 because

Ad
(
u−1

)
Y i, i = 1, . . . ,m form an orthonormal basis.

In the light of this corollary we write

cH =
m∑
i=1

∣∣∣Ỹ i (ux0)
∣∣∣2 .

This is a constant independent of u ∈ K and the orthonormal basis
(
Y i
)
i=1,... ,m

of s. In order to compute this constant we put u = 1 and choose an orthonormal
adapted basis, which complements

{S1, . . . , Sm} = {
√

2
2
σY1, . . . ,

√
2

2
σYm}

where {Y1, . . . , Ym} is a basis of n+, as the construction in (2). By Lemma 2.4
{S̃1 (x0) , . . . , S̃m (x0)} is an orthogonal basis of Tx0BH with respect to the B
metric. Moreover, for j = 1, . . . ,m,

〈Sj , Sj〉 =
1
2
〈Yj − θYj , Yj − θYj〉 = Bθ (Yj, Yj) = 1

so that ∣∣∣S̃j (x0)
∣∣∣2 = α (H)

if Yj ∈ gα. Therefore, summing up over α > 0 gives the value of cH :

Proposition 5.5. cH =
∑
α>0 dα α (H) where dα = dimgα.

From this proposition we get easily an expression for the Lyapunov exponent
matrix for the symmetric system. For a root α define Hα by α (·) = 〈Hα, ·〉. Let
Q ∈ a be the constant function Q (b). Then Q is the only element of a satisfying

〈Q,H〉 =
cH
2

=
1
2

∑
α>0

dαα (H) .
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for every H ∈ a. Hence

Q =
1
2

∑
α>0

dαHα .

After integrating this constant with respect to the invariant probability measure
on B we get

Theorem 5.6. For the symmetric system (20) the Lyapunov exponent matrix is

Λ =
1
2

∑
α>0

dαHα(22)

This result agrees with Theorem 8.2 in Malliavin and Malliavin [21] (see also
Taylor [26, Cor. 5.2]). The factor 1/2 appearing in (22) is due to our normalization
of (20) which is given by an orthonormal basis of s. Also, in [21] appears a minus
sign which is due to the fact that the horizontal diffusion is given by g−1

t where gt
is the solution of (20) and the Iwasawa decomposition considered in [21] is NAK
so that the two A -parts are inverse to each other.

The symmetric stochastic differential equation (20) also induces Brownian mo-
tions in the immersed flag manifolds. Indeed, by Lemma 2.3 and the remarks
afterwards, if H ∈ a+ is such that α (H) = 1 for every positive root α such that
α (H) 6= 0 then the B metric in BH is induced by its immersion in s. On the other
hand Lemma 2.2 ensures that if Z ∈ s then the vector field Z̃ induced on BH

is the gradient of the height function X 7→ 〈Z,X〉. Since (20) is made up from
an orthonormal basis of s, it follows that the diffusion generated by the induced
differential equation on BH is a gradient Brownian system with respect to the B
metric. More generally, Liao [18, Thm. 1] shows that in each flag manifold there
is a canonical K-invariant Riemannian metric for which our symmetric system
induces a Brownian motion.

Like in the case of linear systems, here, the A-part of the Iwasawa decomposition
gives the Lyapunov spectrum of the induced system. Hence, if Λ stands for the
Lyapunov exponent matrix then the eigenvalues of ad (Λ) in the tangent space at
the origin of the flag manifold are the Lyapunov exponents, given by:

{−α (Λ) : α ∈ Π+, α (H) 6= 0}

(see [18, Section 5] for a detailed discussion of these Lyapunov exponents).

6. Examples

We will describe here some of the semi-simple Lie groups together with their
flag manifolds, emphasizing the B metric which by Proposition 4.5 enters in the
formula for the Lyapunov exponent matrix.

6.1. Real rank 1 groups. The real rank of g (or G) is the dimension of the
subalgebra a. For a rank one Lie group there is just one flag manifold, which is
diffeomorphic to a sphere Sn with dimension n = dims − 1. There is just one
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simple root α and the positive roots are α and possibly 2α. Hence for a symmetric
system the Lyapunov exponent matrix is

Λ = dαHα + d2αH2α = (dα + 2d2α)Hα

with d2α = 0 if 2α is not a root. Since Ad (K) is transitive on the spheres of s,
modulo constant multiples there is just one B metric. It is given by the isometric
immersion of Sn into s when d2α = 0, hence in this case it is the canonical
Riemannian metric in Sn.

The simple rank one Lie algebras are composed of three series of algebras and
an exceptional one (see [14, Ch. X, Table V]). Below we list them with the corre-
sponding dimensions of the root spaces and of s.

• so (1, n); dα = n − 1, d2α = 0; dim s = n. (This class includes sl (2,R) ≈
sp (1,R)≈ so (1, 2) and su∗ (4) ≈ so (1, 5));

• su (1, n); dα = 2 (n− 1), d2α = 1; dims = 2n. (This class includes so∗ (6) ≈
su (1, 3));

• sp (1, n); dα = 4 (n− 1), d2α = 3; dims = 4n;
• A real form of the exceptional Lie algebra F4; dα = 8, d2α = 7; dims = 16.

Symmetric systems in so (1, n) were studied by Baxendale [4]. This is the Lie
algebra of real matrices of the form(

0 γ
γt B

)
(23)

with B skew-symmetric and γ a 1×n-matrix. For a Cartan decomposition we can
take s to be the subspace of matrices in (23) with B = 0 and

a = {H (γ) =
(

0 γ
γt 0

)
: γ = (x, 0, . . . , 0) , x ∈ R}.(24)

The computation of adjoints and the Cartan-Killing form gives, for the simple root
α,

Hα =
1

2 (n− 1)
H (γ)

where γ = (1, 0, . . . , 0). Hence the matrix Lyapunov exponent is Λ = 1
4H (γ).

The eigenvalues of this matrix are the Lyapunov exponents computed in [4, Thm.
2.6], with λ =

√
1/ (2 (n− 1)) (the notation is as in [4]). This normalization of

the system of [4] comes from the fact that we consider systems made up of an
orthonormal basis in s. In fact, with H (γ) and γ as in (23 ), 〈H (γ) , H (γ)〉 =
2 (n− 1) |γ|2 with |γ| given by the canonical inner product in Rn.

The Lie algebra su (1, n) is the algebra of the skew-Hermitian matrices with
respect to a Hermitian form of signature (1, n). It is realized as the algebra of
complex matrices of the form (

it z
z∗ B

)
(25)
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where t ∈ R, z ∈ Cn is a 1 × n complex matrix and B + B∗ = 0. We denote the
matrix in (25) by (t, z, B) ∈ R× Cn × u (n). There are the following data:

k = {(t, 0, B) : trB = −it}, s = {(0, z, 0) : z ∈ Cn} ≈ Cn

and a = spanRH0 with H0 = (0; 1, 0, . . . , 0; 0) is a maximal abelian subalgebra of
s. The eigenvalues of ad (H0) are 0,±1,±2, so that the roots are ±α,±2α with
α (H0) = 1. Since dimg±α = 2 (n− 1) and dimg±2α = 1,

〈H0, H0〉 = 4 (n− 1) + 8 = 4 (n+ 1) .

Hence the Cartan-Killing form is 〈C,D〉 = 2 (n+ 1) tr (CD) for C,D ∈ su (1, n).
If z ∈ Cn is such that its first component is purely imaginary we denote by [z]

the n × n skew-Hermitian matrix B = (bjk) whose first row is z and bjk = 0 if
j, k ≥ 2 . By computing the eigenspaces of ad (H0), it follows that n+ = gα+g2α is
the subalgebra whose elements are of the form (t; z; [z]) with z = (−it, z2, . . . , zn).
If Y = (t; z; [z]) ∈ n+ then Y + θ (Y ) = 2 (t; 0; [z]) because θ fixes k and changes
the sign in s. This implies that

ζ :
(
it 0
0 [z]

)
7−→

(
0 z
z∗ 0

)
.

Now, let X = (t; 0; [z]) and Y = (s; 0; [w]) with z1 = it and w1 = is. Then

[H0, X] = (0; 2it, z2, . . . , zn; 0) .

So that (
X̃, Ỹ

)
H0

= 4 (n+ 1) (2ts+ Re (z2w̄2 + · · ·+ znw̄n)) .

Through the identification of s with Cn , X̃ (H0) becomes the tangent vector

− (2it, z2, . . . , zn) .

Since a similar expression holds for Ỹ , the B metric in the tangent space to S2n−1

at (1, 0, . . . , 0) is

((it, z2, . . . , zn) , (is, w2, . . . , wn)) = (n + 1) (2ts+ Re (z2w̄2 + · · ·+ znw̄n)) .

Note that (it, 0, . . . , 0) is in the direction of the complex line spanned by
(1, 0, . . . , 0). This inner product extends to the whole sphere through the ac-
tion of SU (n) which is contained in K. Since SU (n) maps complex subspaces into
complex subspaces, we have the following description of the B metric at z ∈ S2n−1:
it is 2 (n + 1) times the canonical inner product in the direction of the complex
line spanned by z and (n+ 1) times the canonical inner product in the subspace
orthogonal to this complex line.

We refrain to write down the details for the algebra sp (1, n). The description
is similar to su (1, n) with a quaternionic space playing the role of Cn .
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6.2. Real Forms. Up to isomorphism each complex semi-simple Lie algebra gC
has just one normal real form g (see e.g. [14]). For such a real form a maximal
abelian subalgebra a ⊂ s is a Cartan subalgebra of g, the root spaces gα are one
dimensional and the subalgebra m ⊂ k reduces to zero. We describe below the
normal real forms of the simple complex classical Lie algebras, together with their
flag manifolds. We use the notation Eij for the matrix whose only nonzero entry
is 1 in position i, j. Also,

λi : diag{a1, . . . , an} 7−→ ai

is a linear functional in the space of diagonal matrices.

Example Al. The Lie algebra sl (n,R) is the normal real form of sl (n,C ). We
have k = so (n,R), s the space of trace zero symmetric n × n matrices and a the
subalgebra of diagonal matrices in sl (n,R). The Cartan-Killing form is

〈X,Y 〉 = 2n tr (XY ) .

The set of (g, a)-roots is Π = {αij = λi − λj : i 6= j}. The root space gαij is
spanned by Eij, i 6= j. The co-root αij with respect to the Cartan-Killing is the
matrix

Hαij =
Eii − Ejj

2n
.

We can declare αij > 0 if i < j. Hence for a symmetric system normalized by the
Cartan-Killing form its Lyapunov exponent matrix is

Λ =
1

2n
diag{n− 1, n− 3 . . . ,−n+ 1} .

The flag manifolds of a group whose Lie algebra is sl (n,R) are the standard flag
manifolds: Given a sequence of positive integers r = (r1, . . . rk) with r1 + · · ·+rk =
n let F (r) stand for the manifold of all flags (V1 ⊂ · · · ⊂ Vk) where Vi is a subspace
of Rn with dimVi = r1 + · · ·+ ri. Let

H = diag{a1, . . . , an} a1 + · · ·+ an = 0

be such that a1 = · · · = ar1 > ar1+1 = · · · = ar1+r2 > · · · . Then F (r) identifies
with the orbit of H under conjugations by orthogonal matrices. By varying H we
get different embeddings of F (r) into s with corresponding B metric. In case H
has only two eigenvalues with multiplicities d and n−d, F (r) is the Grassmannian
Grd (n) of d-dimensional subspaces of Rn. In this case the B metric is just the
metric induced by the embedding in s. It is a multiple of the canonical metric
in the Grd (n) which turns it into a locally symmetric space (see Kobayashi and
Nomizu [17]). The Grassmannians are the only immersed flag manifolds.

Example Cl. The normal real form of the complex simple Lie algebra sp (n,C )
is the Lie algebra sp (n,R) of real symplectic matrices. It is the Lie algebra of
matrices which are skew with respect to the canonical symplectic form

ω (u, v) = ut
(

0 −1n×n
1n×n 0

)
v u, v ∈ R2n .
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Hence it is given by the 2n× 2n real matrices of the form

(A,B,C) =
(
A B
C −At

)
with B and C symmetric n× n matrices. A Cartan decomposition is given by the
symmetric and skew symmetric matrices in sp (n,R), that is,

k = {
(
A,B,−Bt

)
: A+ At = 0} ≈ u (n) s = {

(
A,B,Bt

)
: A = At} .

We can choose

a = {(A, 0, 0) : A = diag (a1, . . . , an)} .
Then the roots are αij = λi−λj , i 6= j and ±βij = ± (λi + λj) with Π+ = {αij, i <
j;βij}. Since the Cartan-Killing form is 〈C,D〉 = 2ntr (CD), the co-roots are

Hαij =
1

2n
(Eii − Ejj, 0, 0) Hβij =

1
2n

(Eii + Ejj, 0, 0) .

Adding up the positive co-roots we get the Lyapunov exponent matrix for a sym-
metric system

Λ =
1

2 (n+ 1)
(diag{2n− 1, 2n− 3, . . . , 1}, 0, 0) .

A subspace V ⊂ R2n is Lagrangian if the restriction of ω to V is identically zero.
By force dimV ≤ n. Denote by Ld (n), d = 1, . . . , n the set of all d -dimensional
Lagrangian subspaces of R2n. Similarly, denote by FL (r) the subset of F (r) con-
sisting of flags (V1 ⊂ · · · ⊂ Vk) which are made up of Lagrangian subspaces. Any
flag manifold of sp (n,R) is some FL (r). In particular, the minimal flag manifolds
are Ld (n), d = 1, . . . , n. For a sequence r let

Ar = diag{a1, . . . , an}
be such that a1 = · · · = ar1 > ar1+1 = · · · = ar1+r2 > · · · , and put Hr = (Ar, 0, 0).
Then the Ad (K)-orbit of H identifies with FL (r). Since Hr has just one positive
eigenvalue if and only if r = (n), Ln (n) is the only flag manifold of sp (n,R) which
is immersed.

Example B-Dl. The normal real form of so (n,C ) is so (l, n− l) the Lie algebra
of the matrices which are skew-symmetric with respect to a quadratic form of
signature (l, n− l). Here n = 2l or 2l + 1 according if it is even or odd. The
description here parallels that of the symplectic Lie algebra, with the quadratic
form instead of the symplectic one. We shall avoid it here, but record that, in
the canonical realization of the algebras, the Lyapunov exponent matrix for a
symmetric system is given by

Λ =
1

2 (l − 1)

(
A 0
0 −A

)
A = diag{2l − 2, 2l− 4, . . . , 0}

for n = 2l even and

Λ =
1

2l − 1

 0 0 0
0 A 0
0 0 −A

 A = diag{2l − 1, 2l− 3, . . . , 1}
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for n = 2l + 1 odd.
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Itô equations. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes
Math. - Springer 1186 (1986), 129–159.

[3] Arnold, L. and Imkeller, P., Furstenberg-Khasminskii formulas for Lyapunov exponents via
antecipative calculus, Stochastics and Stochastics Reports, 54 (1+2) (1995), 127–168.

[4] Baxendale, P. H., Asymptotic behavior of stochastic flows of diffeomorphisms: Two case

studies, Probab. Theory Related Fields, 73 (1986), 51–85.

[5] Baxendale, P. H., The Lyapunov spectrum of a stochastic flow of diffeomorphisms. In Lya-

punov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186
(1986), 322–337.

[6] Borel, A., Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. 40 (1954),
1147–1151.

[7] Carverhill, A. P., Flows of stochastic dynamical systems: Ergodic Theory, Stochastics 14

(1985), 273–317.

[8] Carverhill, A. P., A Formula for the Lyapunov numbers of a stochastic flow. Application to

a perturbation theorem, Stochastics 14 (1985), 209–226.

[9] Carverhill, A. P., A non-random Lyapunov spectrum for non-linear stochastic systems,

Stochastics 17 (1986), 253–287.

[10] Carverhill, A. P. and Elworthy, K. D., Lyapunov exponents for a stochastic analogue of the
geodesic flow, Trans. Amer. Math. Soc. 295 (1986), 85–105.

[11] Duistermaat, J. J., Kolk, J. A. C. and Varadarajan, V., Functions, flows and oscillatory
integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio

Math. 49 (1983), 309–398.

[12] Furstenberg, H. and Kesten, H., Products of random matrices, Ann. Math. Stat. 31 (1960),

457–469.

[13] Guivarc’h, Y. and Raugi, A., Frontière de Furstenberg, propriétés de contraction et
théorèmes de convergence, Z. Wahrscheinlinchkeitstheor. Verw. Geb. 69 (1985), 187–242.

[14] Helgason, S., Differential geometry, Lie groups and symmetric spaces, Academic Press
(1978).

[15] Ikeda, N. and Watanabe, S., Stochastic differential equations and diffusion processes, North-
Holland (1981).

[16] Khashminskii, R. Z., Stochastic stability of differential equations, Sijthoff and Noordhoff,

Alphen (1980).

[17] Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Interscience Publishers

(1963 and 1969).

[18] Liao, M., Stochastic flows on the boundaries of Lie groups, Stochastics Stochastics Rep. 39

(1992), 213–237.

[19] Liao, M., Liapunov Exponents of Stochastic Flows, Ann. Probab. 25 (1997), 1241–1256.

[20] Liao, M., Invariant diffusion processes in Lie groups and stochastic flows, Proc. of Symposia

in Pure Math. 57 (1995), 575–591.

[21] Malliavin, M. P. and Malliavin, P., Factorisations et lois limites de la diffusion horizontale

au-dessus d’un espace Riemannien symmetrique, Lecture Notes Math. 404 (1974), 164–217.

[22] Oseledec, V. I., A multiplicative ergodic theorem. Lyapunov characteristic numbers for dy-
namical systems, Trans. Moscow Math. Soc. 19 (1968), 197–231.



LYAPUNOV EXPONENTS FOR STOCHASTIC DIFFERENTIAL EQUATIONS . . . 231

[23] Ruelle, D., Ergodic theory of differentiable dynamical systems, I.H.E.S. – Publ. Math. 50,
(1979), 275–306.

[24] San Martin, L. A. B. and Arnold, L., A Control problem related to the Lyapunov spectrum
of stochastic flows, Mat. Apl. Comput. 5 (1986), 31–64.

[25] Sussmann, H. and Jurdjevic, V., Controllability of nonlinear systems, J. Differential Equa-
tions 12 (1972), 95–116.

[26] Taylor, J. C., The Iwasawa decomposition and the limiting behavior of Brownian motion on

a symmetric space of non-compact type, Contemp. Math. AMS 73 (1988), 303–302.

[27] Warner, G., Harmonic Analysis on Semi-simple Lie Groups, Springer-Verlag (1972).
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