Previous |  Up |  Next

Article

Keywords:
fibred manifold; projectable objects; $d$-tensor fields
Summary:
The aim of this paper is to study the projectable and $N$-projectable objects (tensors, derivations and linear connections) on the total space $E$ of a fibred manifold $\xi $, where $N$ is a normalization of $\xi $.
References:
[1] Ako M.: Fibred spaces with almost complex structure. Kodai Math. Sem. Rep., 29 (1972), 482–505. MR 0353192
[2] Bejancu A.: Finsler Geometry and Applications. Math. and its appl., Chichester, 1988.
[3] Cruceanu V.: Sur la structure presque produit assiciée à une connection sur un espace fibré. An. St. Univ. “Al.I.Cuza" Iassy, XV (1969), 159–167. MR 0256294
[4] Cruceanu V.,: Connections compatibles avec certaines structures sur un fibré vectoriel banachique. Czechoslovak Math. J., 24 (1974), 126–142. MR 0353356
[5] Cruceanu V.: A New definition for certaines lifts on a Vector Bundle. An. St. Univ. ”Al.I.Cuza” Iassy, 42 (1996), 59–72. MR 1458921
[6] Gray A.: Pseudo-Riemannian almost products manifolds and submersions. J.Math.and Mech. 16 (1967), 715–738. MR 0205184
[7] Grifone J.: Structures presque-tangente et connexions. I, II, Ann. Inst. Fourier, 22 (1972), 287–334, 291–338. MR 0336636
[8] Ishihara S., Konishi M.: Differential Geometry of Fibred Spaces. Publ. Study Group of Geometry, 8 (1973), 1–200. MR 0405275 | Zbl 0337.53001
[9] Mangiarotti L., Modugno M.: Connections and Differential Calculus on Fibred Manifolds. Istituto de Mat. Appl. “G. Sansone", Italy, 1989, 147 pp. Zbl 0841.53023
[10] Miron R. : The geometry of Higher-Order Lagrange Spaces. Aplications to Mechanics and Physics. Kluwer Acad. Publ. FTPH (1996). MR 1437362
[11] Miron R., Anastasiei M.: The Geometry of Lagrange Spaces. Theory and Applications. Kluwer Acad. Publ. 59 (1994). MR 1281613 | Zbl 0831.53001
[12] Popescu M., Popescu P.: d-Linear Connections on Fibred Manifolds. An. Univ. Craiova, Ser. mat., XXIII (1996), 52–59. MR 1654908 | Zbl 1053.53513
[13] Popescu P.: On the geometry of R-tangent spaces. Rev. Roum. Math. Pures Appl., 37(1992), 8, 727–733. MR 1188626
[14] Yano K., Ishihara S.: Differential Geometry of Fibred Spaces. Kodai Math. Sem. Rep., 19 (1967), 257–288. MR 0224027 | Zbl 0153.51204
Partner of
EuDML logo