Article
Keywords:
metric space; multivalued mapping; coincidence point; $R$-weakly commuting map
Summary:
In this paper we extend the concept of $R$-weak commutativity to the setting of single-valued and multivalued mappings. We also establish a coincidence theorem for pairs of $R$-weakly commuting single-valued and multivalued mappings satisfying a contractive type condition.
References:
[1] Beg, I. and Azam, A.:
Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. Ser. A 53 (1992), 313–326.
MR 1187851
[2] Cho, Y. J., Fisher, B. and Jeong, G. S.:
Coincidence theorems for nonlinear hybrid contractions. Internat. J. Math. Math. Sci. 20(2) (1997), 249–256.
MR 1444724
[3] Hadzic, O.:
A coincidence theorem for multivalued mappings in metric spaces. Studia Univ. Babeş-Bolyai Math. XXVI(3) (1981), 65–67.
MR 0681096 |
Zbl 0506.54041
[4] Jungck, G.:
Compatible mappings and common fixed points. Internat. J. Math. Math. Sci. 9 (4) (1986), 771–779.
MR 0870534 |
Zbl 0802.47053
[5] Kaneko, H.:
Single-valued and multi-valued $f$-contractions. Boll. Un. Mat. Ital. Ser. A 4 (1985), 29–33.
MR 0781791 |
Zbl 0568.54031
[6] Kaneko, H. and Sessa, S.:
Fixed point theorems for compatible multivalued and single valued mappings. Internat. J. Math. Math. Sci. 12(2) (1989), 257–262.
MR 0994907
[7] Nadler, S.:
Multivalued contraction mappings. Pacific J. Math. 20 (1969), 475–488.
MR 0254828
[8] Pant, R. P.:
Common fixed points of noncommuting mapping. J. Math. Anal. Appl. 188 (1994), 436–440.
MR 1305460
[9] Rashwan, R. A.:
A coincidence theorem for contactive type multivalued mappings. J. Egyptian Math. Soc. 5 (1) (1997), 47–55.
MR 1488206