1. Čermák J.:
Note on simultaneous solutions of a system of Schröder’s equations. Math. Bohemica 120, 1995, 225–236.
MR 1369682
2. Čermák J.:
The asymptotic bounds of solutions of linear delay systems, J. Math. Anal. Appl. 115. 1998, 373–388.
MR 1644331
3. Čermák J.:
Asymptotic estimation for functional differential equations with several delays. Arch. Math. (Brno) 35, 1999, 337–345.
MR 1744521
4. Derfel G.:
Functional-differential equations with compressed arguments and polynomial coefficients: Asymptotic of the solutions. J. Math. Anal. Appl. 193, 1995, 671–679.
MR 1338729
5. Diblík J.:
Asymptotic equilibrium for a class of delay differential equations. Proc. of the Second International Conference on Difference equations (S. Elaydi, I. Győri, G. Ladas, eds.), 1995, 137–143.
MR 1636319
6. Iserles A.:
On generalized pantograph functional-differential equation. European J. Appl. Math. 4, 1993, 1–38.
MR 1208418
7. Kato T., McLeod J. B.:
The functional differential equation $y'(x) = a y(\lambda x) + b y(x). Bull. Amer. Math. Soc. 77, 1971, 891–937.
MR 0283338
8. Kuczma M., Choczewski B., Ger R.:
Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990.
MR 1067720 |
Zbl 0703.39005
9. Lim E. B.:
Asymptotic bounds of solutions of the functional differential equation $x'(t) = ax(\lambda t) + bx(t) + f (t)$, $0 < \lambda < 1$. SIAM J. Math. Anal. 9, 1978, 915–920.
MR 0506772
10. Liu Y.:
Regular solutions of the Shabat equation. J. Differential Equations 154, 1999, 1–41.
MR 1684290 |
Zbl 0929.34054
11. Makay G., Terjéki J.:
On the asymptotic behavior of the pantograph equations. E. J. Qualitative Theory of Diff. Equ 2, 1998, 1–12.
MR 1615106
12. Neuman F.:
Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107), 1982, 488–494.
MR 0669790 |
Zbl 0524.34070
13. Pandolfi L.:
Some observations on the asymptotic behaviors of the solutions of the equation $x'(t) = A(t)x(\lambda t)+B(t)x(t)$, $\lambda > 0$. J. Math. Anal. Appl. 67, 1979, 483–489.
MR 0528702