Title:
|
On existence of singular solutions of $n$-th order differential equations (English) |
Author:
|
Bartušek, Miroslav |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
36 |
Issue:
|
5 |
Year:
|
2000 |
Pages:
|
395-404 |
. |
Category:
|
math |
. |
MSC:
|
34C11 |
idZBL:
|
Zbl 1090.34536 |
idMR:
|
MR1822807 |
. |
Date available:
|
2008-06-06T22:26:45Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107752 |
. |
Reference:
|
1. I. V. Astashova: On Asymptotic Behaviour of Solutions of Some Nonlinear Differential Equations.Dokl. Raz. Zas. Sem. Ins. Prikl. Mat. Tbilisi University, 1 (1985), 9-11. |
Reference:
|
2. T. A. Chanturia: On Singular Solutions of Nonlinear Systems of Ordinary Differential Equations.Coll. Math. Soc. J. Bolyai, In: “15. Diff. Equations” (1975), 107-119. MR 0591720 |
Reference:
|
3. T. A. Chanturia: On Existence of Singular and Unbounded Oscillatory Solutions of Differential Equations of Emden–Fowler Type.Dif. Urav. 28 (1992), 1009-1022. MR 1198158 |
Reference:
|
4. J. Jaroš T. Kusano: On Black Hole Solutions of Second Order Differential Equations with a Singularity in the Differential Operator.Funk. Ekv. (to appear). |
Reference:
|
5. I. Kiguradze: Asymptotic Properties of Solutions of a Nonlinear Differential Equation of Emden–Fowler Type.Izvestiya Akad. Nauk SSSR. Ser. Mat. 29 (1965), 965–986. MR 0190459 |
Reference:
|
6. I. Kiguradze: On the Oscilation of Solutions of the Equation \frac{d^m u}{dt^m} + a(t) |u|^n sgn u.Mat. Sbornik 65 (1964), 172–187. Zbl 0135.14302, MR 0173060 |
Reference:
|
7. I. Kiguradze: Some singular Boundary Value Problems for Ordinary Differential Equations.Tbilisi University Press, Tbilisi, (1975). MR 0499402 |
Reference:
|
8. I. Kiguradze G. Kvinikadze: On Strongly Increasing Solutions of Nonlinear Ordinary Differential Equations.Ann. Math. Pura ed Appl. 130 (1982), 67–87. MR 0663965 |
Reference:
|
9. I. Kiguradze T. A. Chanturia: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Acad. Pub., Dordrecht–Boston–London, (1993). MR 1220223 |
Reference:
|
10. D. Mirzov: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations.Adygea, Majkop, (1993). |
. |