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A NOTE TO FRIEDRICHS’ INEQUALITY

DANA RfHOVA-SKABRAHOVA

ABSTRACT. The main aim of this paper is to derive continuous and discrete
forms of inequalities which are similar to Friedrichs’ inequality and to show
that for h sufficiently small the constant C' appearing in discrete inequali-
ties written for functions from finite element spaces X 5 is independent of h.
The discrete forms of Friedrichs’ inequality are restricted to two-dimensional
domains in this paper. These inequalities have applications in the theory of
two-dimensional electromagnetic field and in the analysis of the approximate
solution of Maxwell’s equations.

1. INTRODUCTION

Let Q, Qp, Qp be two-dimensional bounded domains with continuous bound-
aries in the sense of Necas (see [6, p. 14]) such that

QZQEUQP, QEQQPZ(Z), mess Qp > 0.

Further, in Theorem 3.3 we shall assume that boundaries 92, 9Qg, 0Qp are
Lipschitz continuous and piecewise of class C? and we restrict our considerations
to the case of a simply connected domain () divided into subdomains g and Qp
like this:

Qg Qp

Fig. 1 Fig. 2
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Qg

Fig. 3

Let us note that some of such cases of 2 can occur in problems of two-dimensional
nonlinear quasistationary electromagnetic fields in electrical machines.

We shall use the Lebesgue space I»(2) and the Sobolev space H*(2) equipped
with their usual norms ||.||o, ||-||1, respectively (see [4]). The seminorm in the space
H(Q) will be denoted by |.|;. If G is a domain different from 2 then the norms
in Ly(G) and H*(G) will be denoted by |.|lo.c, ||-]l1.c, respectively. In order to
simplify the notation we shall write ||.||x,ar and ||.||x.as, instead of ||.||xq, and
[l 2, 0 TESPECtIVELY, (K = 0,1) (M = E, P), where Qs is an approximation of
Q.

2. CONTINUOUS FORM

2.1 Theorem. Let Q) be a bounded domain with a continuous boundary. Then we
have

(1) ol < K@) (Illl§ p +10[7)  Voe HY(Q).

Proof. The method is analogical to the proof of Friedrichs’ inequality (see [6,
Theorems 1.1.8, 1.1.9]); however, on the contrary to [6] we go to details in the
proof.

A) First we shall prove that H'(Q) is a Banach (and even a Hilbert) space for
the norm given by the right-hand side of (1). Let us denote B = H'(Q); the
symbol 1|.|| will denote a norm in By, i.e. 1|jv] = |[v]1-

Let Bs be a normed linear space which consists of the same elements as B;
provided with the norm

N\ 2
ol = /’L}le‘—F/ 2 (8@) dz
Q =

Qp

We show that the expression 2||.|| is a norm. Let 2||v|| = 0. Then Div = 0, |i| = 1

and [ v*dz = 0. As the derivatives are equal to zero we have v = const, thus
Qp
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the integral over Qp (mesy Qp > 0) which is equal to zero gives v = 0. The other
properties of the norm are evident.
From the definition of the norms .||, 2||.|| it follows that

(2) 2lloll < Hloll-

Let A = I be the identity operator which maps every element v € By onto the
same element v € By. Then relation (2) implies

3) ?[lAv]| = 2ol < Y]l

Thus the operator A is bounded. As it is linear (which is evident) it is contin-
uous. In the part B) of the proof we shall show that the space B, is complete.
Therefore we can use Banach’s theorem on isomorphism (see [5, Theorem 2.20.1]).
According to it, the inverse operator A~! = I from By to Bj is linear and bounded:

(4) HIAT ) = Mol < const (*lv]])

which is inequality (1).
B) Now we prove the completeness of the space B,. Let {vs} C By be a Cauchy

sequence in the norm 2|.||. Then we have
(5) /|vm—vn|2dx—>0 for m,n — oo,
Qp

N

©) / >

According to [6, Theorem 1.1.6] and relation (6), we have (the symbol P, denotes
the set of polynomials of degree zero)

2
dr — 0 for m,n — oco.

Ovm _ Ovn

Hﬁm_f}nHHl(Q)/Pg — 0 for m,n — o0,

i.e. a sequence of classes {05} C H'(Q)/Py corresponding to {vs} is a Cauchy
sequence. Let us note that the symbol H*(Q2)/P, denotes a factorspace of classes
¥ of functions v from H!(2) such that

vLLUED & v—u€pR,

in which a norm is defined by

I3y, = int [l

As the space H'(2)/P, is complete the sequence {7} converges, i.e. there exists
a class © € HY(2)/ Py such that

(7) lim |75 = 8[|z (0)/p =0
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As 05 — 0 = (vs — v)™ we have

®) I3 = Blanyym, = i€ llulh = inf flos =+ gl

where w € ¥ is an arbitrary element (independent on vs), but fixed. We show the
existence of a sequence {p;} C Py depending on w and such that vs + p; — w in
the first norm !||.]|.

Let us choose € > 0 arbitrarily. Relation (7) implies that there exists N(g) such
that

U €
(9) 1Ts — 0|51y Py < 3 for s> N(e).

Further, according to the definition of infimum, there exists ¢ € Py dependent

on v, w, e such that

&
10 s — &,w) < inf s — —.
(10) lvs — w+ g=" |1 nf lvs — w4+ gl + 5

We restrict ourselves to s > N(¢) in (10). Then using (8) and (9) we can rewrite
this relation in the form

(11) lvs —w+ &™)y <& for s> N(e).

Let us set ¢ = % (j =1,2,...). The preceding considerations imply the existence

of numbers N(g1) < N(e2) < ... < N(gp) < ... and qgsl’w) € Po(s > N(a1)),
¢ € Py (s> N(e2)), ..., ¢ € Py(s > N(en)), ... such that

lvs — w + {5, <g;j for s> N(g).
Let us define a sequence {p;} C Py as follows:
ps = an arbitrary element of Py for s < N(ey),

ps=qF")  for N(gj) <s< N(gi1).

As for every € > 0 we can find ¢; such that €; < e, we see that the sequence
{ps} defined by this way has the following property: for every € > 0 we can find
N = N(g;) such that

(12) [lvs +ps —w|1 <e for s> N,

ie.
vs+ps —w in HYQ)

in the first norm 1|.||. (Let us stress that {p;} depends on w € 7.)
Now we prove that {p;} is a Cauchy sequence in H'(Q). We have

Hpm _anO,P < ”(Um - Un) + (pm _pn)HO,P + ||Um - UnHO,P <

(13) < [I(vm + pm) = (vn 4 a)llo + lvm — vnllo.p-
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According to (5), {vs} is a Cauchy sequence in Ly(Q2p). Taking into account (12)
{vs +ps} is convergent in H*(f2), therefore it is a Cauchy sequence in H'(Q) and
consequently a Cauchy sequence in (). Hence with respect to (13) {ps} is a
Cauchy sequence in I5(2p). As P is a finite dimensional space all norms in Py
are equivalent, i.e.

cillpllo.p < llplli < e2llpllo.p VP € Po.

Let us note that the norm ||.||o,p is really the norm for polynomials of degree zero
(even of an arbitrary degree): the equality

Iplg.p = /p2 dz =0,

Qp

where p € By, implies p = 0 because mesp Qp > 0. Thus {p;} is a Cauchy
sequence in the norm of the space H'(Q) and there exists an element p € B such
that ps — p in HY().

Both of the relations vs + ps — w in the norm of H(Q2) and ps; — p in the
norm of H!() give

va_vnng”(Um"'pm)_(Un+pn)‘|l+||pm—pn”1_>0 for m,n — co.

Thus {vs} is a Cauchy sequence in H*(£2) and there exists an element v € H*(12)
such that vs — v in the norm of the space H'((2), i.e. in the norm !||.||. Hence
according to (3), vs — v in the norm 2||.|| so that By is a complete space. O

2.2 Remark. Let us note that the proof of the preceding inequality (1) does
not depend on the dimension of the domain. Further, the constant K(Q) > 0
occurring in this inequality is independent of v.

2.3 Remark. The inequality
ol < K@) (o5 p+ 1) voeHYQ)

can be proved in the same way. The only change is that we substitute H*(£2) and
Py by H*(Q) and P,_1, respectively, where P,_; is the space of polynomials the
degree of which is not greater than k — 1.

3. DISCRETE FORM

So called discrete forms of Friedrichs’ inequality are studied with connections
of solving various variational problems by the finite element method (see, e.g., [8],
1], [3))-

In this section we restrict ourselves to the two-dimensional case of discrete in-
equalities corresponding to inequality (1). Let us approximate a bounded two-
dimensional domain 2 by a domain Q) with a polygonal boundary 02 the
vertices of which lie on 9. Let 7}, be a triangulation of 0, i.e. a set 7, =
{T1,Ts,...,T,,} consisting of a finite number of closed triangles which have the
following properties:

(1) Q= UZ1 T;
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(2) two arbitrary triangles are either disjoint or possess a common vertex or
a common side

We assume that the points of 9 where the condition of C? -smoothness is not
satisfied are vertices of the triangles in 7.

We further assume that every triangulation 7, consists of two subtriangulations
Tne and 7;,p such that

T =TheUThp, TheNThp =0.

The subtriangulation 7, is a triangulation of the polygonal domain Q55 ap-
proximating Qs (M = E, P) and has all properties described above.
With every triangulation 7;, we associate three parameters h, h and ¢ defined

h=maxhpr, h= min hy, ¢ = minJp
TeT) TeT) TeT

where hr and U7 are the length of the greatest side and the smallest angle, re-
spectively, of the triangle T' € 7;,. We restrict ourselves to triangulations {7}
(h € (0, hg), ho > 0) satisfying the conditions

(14) Y>>0 Vhe (07 ho) g = const

(15) i_l/h >Cy>0 Vhe (07 ho) Cp = const.
Let us define a finite dimensional subspace of H* () N C(2,) by the relation
Xp={veCo(y): v| is linear for all T' € 73,} .

The space X}, is a finite element approximation of the space H(Q) defined on the
triangulation 7.
For the purpose of the proof of Theorem 3.3 let us set

(16) thQ—Qh, ThZQh—Q,

(17) whvt = QU — Quves, T = Qe — Qv (M = E, P).
In the proof we shall also need the following notions.
Let T € 7;, be a boundary triangle lying along the curved part of Q. (It has

two vertices on 9f2.) The closed curved triangle T with two straight sides and
one curved side, which is the part of €2, is called the ideal trlangle associated with

the triangle T € 7T;,. The triangle T is an approximation of 7
3.1 Definition. Let w € X}. The function
w:Q,UQ — R!
is called the natural extension of w if
w=w on Qh
and
w

T = p|T{id on T DT
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where p € P, is the linear polynomial satisfying
Pl = wlF .
(The symbol P; denotes the space of all polynomials with the degree less than or

equal to one and T denotes the ideal triangle which is approximated by T'.)

In the proof of Theorem 3.3 the following estimates will be useful.

3.2 Lemma. Let @ be the natural extension of w € Xp,. Then we have

(18) |@]1c, < ChE|@) (e =7,w),

(19) [@lo,er, < ChE|@]lo (e = 7,w)

where the constant C' does not depend on h and w.

See the proof of [10, Lemma 28.8].

The inequality appearing in Theorem 3.3 is the discrete form of inequality (1)
because it is written only for the functions from the finite dimensional space Xj,.

3.3 Theorem. Let Q be a two-dimensional bounded domain with boundary O
piecewise of class C?. Then we have

(20) [vl% 0, < C (03 5, + WITq,) Vo€ X

where the constant C > 0 does not depend on h € (0, hy) and v.
Proof. According to (16), let us write for v € X},

(21) [ol% q, = 18l + 19l17 ., — 119170, = 0] (1 + 67 — 6.),
where
1117 - 1117 .,
(22) 0r = =5, 0w = ——5 .
T el G

Similarly, we obtain

10113 £, + 1013 0, = 10116.p,, + 18116, p = 1915, + [0 + [0]3 7, = [0]F ., =

(23) = (I1913,p + |87) (1 +ea+e&r —eu),
where

lvl1§,p, — 15113, p
0[5, + 913

3

(24) EA =
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2
1,xn

Pl o + [0

|o

(25) Ex (x=T,w).

It should be noted that the function o appearing in ||o]jo,p is the restriction ()p
of o (v € X}) to the domain Qp and (0)p # vp = (vp). (We use the rule: first
indices, then bars.) Relations (21) and (23) imply

10l3,p, + 101 q, 0I5 p + 1017 1+ea+er —cw

Taking into account (1) we see that it suffices to prove

(27) oy =O(h), ex=0(h) (x=Tw), ea=O0(h).
As we have

5 — 11T 19135 1115 50

o qely T el3 19115

the estimate 6, < Ch (x = 7,w) follows from (18) and (19). Similarly, as

=N

1213,y
[o[7
the second estimate (27) for ¢, follows from (18).

Now we estimate . For this purpose we denote by the symbols 75, 7, the
parts of 7,p, Thp along the common boundary A = 9Qp N OQg and by 7/p, wip
the parts of 7, p, wpp along the boundary 0Qp — A. (7hp, ThE, whrp were defined
by (17).) Let us consider only such division of the domain € into subdomains Qg
and 2p demonstrated on Fig. 1, Fig. 2 and Fig. 3. Thus we can write

ey <

<

101132, = 1915, p = 1015, = 17115 e+ 11015 -2 = 17115 2
and (24) gives
2 =112 2 —2
ollg,-p +110llg.p, + 0I5 -a + 11715 -a_

1913, p + 017

(28) leal <

We have
lol..5. < 10137, = 013, -

Using (19) we obtain
19113, < ChB][5 -

Thus the preceding relations imply
(29) lwl2, . < Chljal3
and similarly

(30) 1913z < 1913, < Chllel3-
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To estimate the remaining terms on the right-hand side of (28) we shall need
the following relation

(31) mex lp| < Chz* |Ipllo,r

where p € P; and the constant C' does not depend on 7" and p.

Relation (31) follows from [2, Lemma 2.2.6], [10, (9.4)] and the fact that |J| =
2 meas (T).

It remains to estimate the terms in (28). It holds

2 2
(52) Iol2,0 = N2, -
Let us denote mp = T — T As meas(T' —T) < Ch3. (see [10, (28.5)]) we find
using (31) and the inclusion T c T

[9]15,7, < max|v]*meas mr < Chimax|9]* < Che|o]§ 7 -

T T

Summing over all w7 from 7/ and considering (15), (32) and the fact that all
triangles 7' containing 77 are interior triangles of the domain {2 we get
(33) V15,5, < CRITllg-
The proof of the estimate
(34) 1912, < Chlal3

follows the same lines.
Now we prove the third estimate in (27). Combining (28), (29), (30) with (33)
and (34) we obtain

(35) leal < %,
~ lollg p + 171

Thus, as v € H'(Q) we can write by (1) and (35)

Chl|v||3

leal < % < K(Q)h
2115, p + [0l1

which proves (27)s.

Because of validity (27) we have for h € (0, hg)

N =~

1
§§1+€A—|—6T—6w, <1+6; -6, <2.

Hence, the preceding estimates, relations
imply

—~

26), (1) and the fact that v € H*(Q)

0112 q,

(36) T e
H’UHg,Ph + |’U|%,Qh

<2K(Q) (1406, —6,) <4K(Q) Yo € Xp.
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Inequality (36) is inequality (20) with the constant C' = 4K (Q) where K () is the
constant appearing in (1). O

4. APPLICATIONS

For two media the computation of nonlinear quasistationary two-dimensional
electromagnetic field leads to the nonlinear second order parabolic-elliptic initial-
boundary value problem of the following type.

There is given a two-dimensional bounded domain {2 and an open nonempty set
Qp C Q. We are looking for a function v = u(x1, z2,t) (magnetic vector potential)
such that

8UP 8 8UP .
- = Q T
- ;8@ (Z/Paxi>+fp in Qpx(0,T),
2
0 = i(Z/Eau—E>—|—fE in QEX(O,T), QEZQ—QP,
-1 8%1 8%1
up(r1,72,0) = uf(zr1,22) in Qp,

u satisfies a boundary condition of Dirichlet type at least on a part of 9Q x (0,T)
and the transition conditions

P
[u]gz[yau] =0 on 0NpNINp.

Here the conductivity o = o(zy, ) is a positive function on €, the reluctivity
vy = vp(21, 2, | graduys|) is a positive function on Qyr x [0,00) (M = E, P),
far = far(w, w2,t) is a given current density, vl = uf’(x1,2) is a given function
defined on Q2p and n* denotes the normal to Qg NI p oriented in a unique way.

The numerical solution by the finite element method of the above problem has
been studied, e.g., in [11], [12], [13], [9], [10]. Let us note that papers [11], [12], [13]
have been restricted to domains which can be covered by finite elements exactly;
only the domains 2, Qg and Q2p with polygonal boundaries have been considered.

Taking into account the introduced problem with a nonhomogeneous Dirich-
let boundary condition on a part I'y of the boundary we cannot use ”classical”
Friedrichs’ inequality. When we formulate the discrete problem corresponding to
this one by using the finite element method with linear functions on triangular el-
ements (the discretization in space) and for example by the implicit Euler method
(the discretization in time) then inequality (20) is used in the proof of the exis-
tence, and the uniqueness of the approximate solution. Inequality (1) is used in
the proofs of both the existence of the solution of the variational formulation of
this problem and the convergence of the method (see [7]).
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