[1] Anderson I. M., Duchamp T.:
On the existence of global variational principles. Amer. Math. J. 102 (1980), 781-868.
MR 0590637 |
Zbl 0454.58021
[2] Bauderon M.:
Le problème inverse du calcul des variations. Ann. de l’I.H.P. 36, n. 2 (1982), 159-179.
MR 0662883 |
Zbl 0519.58027
[3] Bott R., Tu L. W.:
Differential Forms in Algebraic Topology. GTM 82 Springer–Verlag, Berlin, 1982.
MR 0658304 |
Zbl 0496.55001
[4] Dedecker P., Tulczyjew W. M.:
Spectral sequences and the inverse problem of the calculus of variations. In Internat. Coll. on Diff. Geom. Methods in Math. Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics 836 Springer–Verlag, Berlin, 1980, 498-503.
MR 0607719
[5] Ferraris M., Francaviglia M.:
Global Formalism in Higher Order Calculus of Variations. Diff. Geom. and its Appl., Part II, Proc. of the Conf. University J. E. Purkyně, Brno, 1984, 93-117.
MR 0793201
[7] Kolář I.:
A geometrical version of the higher order Hamilton formalism in fibred manifolds. Jour. Geom. Phys. 1, n. 2 (1984), 127-137.
MR 0794983
[8] Kolář I., Vitolo R.:
On the Helmholtz operator for Euler morphisms. preprint 1997.
MR 2006065
[9] Krupka D.:
Variational sequences on finite order jet spaces. Diff. Geom. and its Appl., Proc. of the Conf. World Scientific, New York, 1990, 236-254.
MR 1062026 |
Zbl 0813.58014
[10] Krupka D.:
Topics in the calculus of variations: finite order variational sequences. Diff. Geom. and its Appl., Proc. of the Conf., Opava (Czech Republic), (1993) 473-495.
MR 1255563 |
Zbl 0811.58018
[11] Kuperschmidt B. A.:
Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism. Lecture Notes in Math. 775: Geometric Methods in Mathematical Physics, Springer, Berlin, (1980), 162-218.
MR 0569303
[12] Mangiarotti L., Modugno M.:
Fibered Spaces, Jet Spaces and Connections for Field Theories. Int. Meet. on Geometry and Physics, Proc. of the Conf. Pitagora Editrice, Bologna, 1983, 135-165.
MR 0760841 |
Zbl 0539.53026
[13] Modugno M., Vitolo R.: Quantum connection and Poincaré–Cartan form. Conference in honour of A. Lichnerowicz, Frascati, ottobre 1995; ed. G. Ferrarese, Pitagora, Bologna.
[14] Olver P. J., Shakiban C.:
A Resolution of the Euler Operator. Proc. Am. Math. Soc. 69 (1978), 223-229.
MR 0486822 |
Zbl 0395.49002
[16] Takens F.:
A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979), 543-562.
MR 0600611 |
Zbl 0463.58015
[18] Tulczyjew W. M.:
The Euler-Lagrange Resolution. Internat. Coll. on Diff. Geom. Methods in Math. Phys., Aix–en–Provence, 1979; Lecture Notes in Mathematics 836 Springer–Verlag, Berlin, 1980, 22-48.
MR 0607685
[19] Vinogradov A. M.:
On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200-1204.
MR 0501142 |
Zbl 0403.58005
[20] Vinogradov A. M.: A spectral sequence associated with a non-linear differential equation, and algebro–geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19 (1978), 144-148.
[21] Vitolo R.: Finite order Lagrangian bicomplexes. Math. Proc. of the Camb. Phil. Soc., to appear 124 n. 3, 1998.
[22] Vitolo R.:
On different geometric formulations of Lagrangian formalism. preprint 1997, to appear on Diff. Geom. and Appl.
MR 1692446
[23] Wells R. O.:
Differential Analysis on Complex Manifolds. GTM 65 Springer–Verlag, Berlin, 1980.
MR 0608414 |
Zbl 0435.32004