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A NEW INFINITE ORDER FORMULATION
OF VARIATIONAL SEQUENCES

RAFFAELE VITOLO

ABSTRACT. The theory of variational bicomplexes is a natural geometrical
setting for the calculus of variations on a fibred manifold. It is a well-
established theory although not spread out very much among theoretical and
mathematical physicists. Here, we present a new approach to infinite order
variational bicomplexes based upon the finite order approach due to Krupka.
In this approach the information related to the order of jets is lost, but we
have a considerable simplification both in the exposition and in the compu-
tations. We think that our infinite order approach could be easily applied in
concrete situations, due to the conceptual simplicity of the scheme.

INTRODUCTION

The theory of variational bicomplexes can be regarded as a natural geometrical
setting for the calculus of variations on a fibred manifold [1, 2, 9, 10, 11, 14, 16, 17,
18, 19, 20]. The geometric objects which appear in the calculus of variations find
a place on the vertices of the bicomplex, and are put in relation by the morphisms
of the bicomplex. Such morphisms are closely related to the differential of forms
on the jet spaces of the starting fibred manifold. Moreover, the global inverse
problem is solved in this context.

Some formulations [2, 11, 14, 16, 17, 18, 19, 20] of variational bicomplexes are
carried on by means of infinite order jet techniques. Roughly speaking, the vertices
of variational bicomplexes are spaces of forms defined on jet spaces of any order.
These spaces have a natural splitting which turns out to be very useful from a
technical viewpoint. The formulation in [1] is partially carried on by means of
finite order jet spaces.

The finite order variational bicomplex has been introduced by Krupka [9] by
a very simple construction from a conceptual viewpoint. Namely, 1t is produced
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when one quotients the de Rham sequence on a finite order jet space by means
of an intrinsically defined subsequence arising from the fibring. In this way, one
obtains a bicomplex where the horizontal morphisms are either the differentials of
forms or quotient morphisms, and the vertical morphisms are either inclusions or
natural projections on quotient spaces. For an intrinsic analysis of this theory, see
[21].

The above formulation can help in keeping trace of the order of the geometric
objects involved at each vertex of the bicomplex. This fundamental feature de-
pends on the fact that Krupka’s formulation uses finite order jet. Of course, this
feature 1s lost in infinite order approaches. But, in order to show the connection
between the quotient sequence and the calculus of variations one has to face sev-
eral technical difficulties. The most difficult point is that the spaces of forms on
a finite order jets do not split as their analogues in the infinite order case. This
is one of the main obstacles that one meets when giving a representation of the
quotient sequence by means of forms (see [21]).

In this paper, we present a new approach to infinite order variational bicom-
plexes which is inspired by Krupka’s finite order approach. We think that this
infinite order approach has both the advantages of the conceptual simplicity of
Krupka’s scheme and the advantages in computations due to the use of spaces of
forms at infinite order.

Indeed, as it is proved in [22], our infinite order approach turn out to be the
direct limit of Krupka’s finite order approach. Anyway, in this paper we show that
we can directly formulate our infinite order approach without passing through the
finite order one and the direct limit.

In the first section we introduce jet spaces, the contact structure [12, 15] and
the sheaves of forms on jets, and evaluate their direct limit.

In the second section we define the infinite order variational bicomplex, which
is inspired by the finite order approach due to Krupka.

In the third and the fourth sections we give in two steps an isomorphism of
the infinite order variational sequence with a sequence of presheaves which are
the direct limit on some sheaves of forms on jet bundles. Here, the first variation
formula [7] plays an essential role.

In the last section, we interpret the sequence that we found in the above two
sections in terms of geometric objects and operators of the calculus of variations.

We end the introduction with some mathematical conventions. In this paper,
manifolds are connected and °°, and maps between manifolds are . Mor-
phisms of fibred manifolds (and hence bundles) are morphisms over the identity
of the base manifold, unless otherwise specified.

We make use of definitions and results on presheaves and sheaves from [23].
In particular, we are concerned only with (pre)sheaves of —vector spaces, hence
‘(pre)sheaf morphism’ stands for morphism of (pre)sheaves of —vector spaces.

If P be a presheaf, then we denote by P the sheaf generated (in the sense
of [23]) by P. We denote by P the set of sections of a (pre)sheaf P over a
topological space  defined on the open subset C . We recall that a sequence
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of (pre)sheaves over s said to be exact if it is locally exact (see [23] for a more
precise definition). If A, B are two sub(pre)sheaves of a sheaf P, then the wedge

product A A B is defined to be the sub(pre)sheaf of sections of /2\77 generated by
wedge products of sections of A and 5.

Let {P } ¢y be a family of (pre)sheaves and { P — P } ¢y < bea
family of injective (pre)sheaf morphisms such that, for all eN, S_ <
we have o = and =idp,. Wesay {P } to be an injective system of

(pre)sheaves. We define the direct limit of the injective system to be the presheaf
P = h_I}Il’P = I?lN'P /N

where ~ is the equivalence relation defined as follows. For each € P and

"eP ., if < 7 then ~ 'ifand only if I( ) = ’. Note that, in general, the
direct limit of an injective system of sheaves needs not to be a sheaf. Let {P }
and {Q } be two injective systems of (pre)sheaves, and suppose that we have
a family of (pre)sheaf morphisms { :P — @ } such that the following diagram
commutes

P —Q

3 E

P —Q

Then, the presheaf morphism
=lm P Q:[]m] ()]
1s well defined.

where € 7P for some
Acknowledgements. I would like to thank I. Kolaf, D. Krupka, M. Modugno,
and J. Stefanek for stimulating discussions.

1. JET SPACES

In this section we recall some basic facts on jet spaces. Namely, we start with
a natural splitting of the cotangent bundle of jet spaces. Then, we study some
natural sheaves of forms on jet spaces, and introduce the horizontal and vertical
differential of forms. Finally, we evaluate the direct limit of the sheaves and
morphisms.

As our framework, we assume a fibred manifold
'Y - X

with dimX = and dimY = + . We deal with the vertical bundle Y :=
ker — Y. Moreover, for 0 < |, we are concerned with the —th jet space Y
in particular, we set oY =Y. We recall the natural fibrings Y>> Y
and : Y = X for0< < . A detailed account of the theory of jets can be

found in [12, 11, 15].
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Charts on Y adapted to the fibring are denoted by ( ). Greek indices
run from 1 to  and label base coordinates; Latin indices run from

1to and label fibre coordinates. We denote by ( ) and ( ), respectively,
the local bases of vector fields and 1-forms on Y induced by an adapted chart. We
denote multi-indices of dimension by underlined letters such as = ( 1 ),
with 0 < 4 - we identify a standard index  with the multi-index _ defined
by _ =land_ =0if # . Wealsoset||:= ;+---+ and !:= ;! L
The charts induced on Y are denoted by ( © ), with 0 <| | < ; in particular,

if | | =0, then we set p = - The local vector fields and forms of Y induced
by the fibre coordinates are denoted by ( =) and ( ), 0 < || < 1< <

respectively.

A section : X — Y can be naturally prolonged to a section X = Y,
with coordinate expression o = o . If Z — X is another fibred manifold
and :Y — Z is a morphism over idx, then can be naturally prolonged to
a morphism Y —  Z over id ,_,v by means of the characterisation
( o = ( o )foranysection :X — Y. A vertical vector field Y —

Y can be naturally prolonged to a vertical vector field Y — Y by
prolonging its flow in the above way and by considering the natural isomorphism
Y ~ Y. The coordinate expressions are given later.

Splitting of the cotangent bundle

We recall the natural inclusion Y x *X C * Y and projection * Y —
x

* *

Y. We have no natural complementary maps; so, Y has no natural
splitting into the direct sum of ‘vertical’ and ‘horizontal’ tangent subspaces over

Y . On the other hand, we obtain such a natural splitting over ;1Y by means
of the “contact maps” on jet spaces (see [12]). Namely, for > 0, we consider the

natural injective fibred morphism over 1Y — Y

I 41 : +1Y;<{ X — Y

and the complementary surjective fibred morphism

: Y x Y — Y
+1 +1 &

r

whose coordinate expression are
A4y1= @n41 = & + + ) 0<]I<

w= ©-=( - , Jo-  0<[]<

The transpose of the maps 1 11 41 are the fibred morphism over ;1Y —
Y

*

’H+1: +1Y>< * Y% >‘FAX-
X

e Y x * _1Y - _1Y
r—1Y
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We have the remarkable vector bundles

iHlI[*_I_l ~ 1Y ><Y *X

. * * *

m *C Y x 1Y C Y
r—1Y

Thus we obtain the natural splitting of * Y over 1Y [12]

(1) 1Y X, Y =ima’,, @im T

r

given by

=410 )+ ( 410 )

Sheaves of forms

We are concerned with some distinguished sheaves of forms on jet spaces (see
also [15]). Note that we consider sheaves on Y with respect to the topology
generated by open sets of the kind ( 0)_1 (U), where U C Y is open in Y. This
is suggested by the topological triviality of the fibre of ;Y — Y [9].

Let us introduce the sheaves which will play a basic role throughout the paper.
Let 0 <

1. For 0 < | we consider the standard sheaf A of —forms : Y - A * Y
on Y.

ii. For0 < < | we consider the subsheaf A¢ ) C A of local fibred morphisms
over Y — Y ofthetype : Y — A * Y. Pullback by provides the

natural inclusion A C A¢ . Of course, if = ,then A¢ y=A .

) +
ii. For 0 < + 1, we consider the subsheaf A 43 C A 4 of local fibred
morphisms over 1Y of the type

1Y — Aim *_H)/}/\ X

¢ ) +
v. For 0 < + 1, we consider the subsheal A (43 yC A (41 ) of local
fibred morphisms over 1Y — 1Y of the type

aY > Am T AN TX
C )

¢ )
Of course, if = then A (43 y= A 41,

The fibred splitting (1) yields a fundamental sheaf splitting.
Lemma 1.1. We have the splitting

| (01 (10)
Ajiy= A pd A
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where the projection on the first factor and on the second factor are given, respec-

tively, by
1 . 1 (01)
:ﬂ+1ZA(+1)—>A+1Z
1 . 1 (10)
+1:A(+1)—>A +1: = +1 4

= 0 41 J

1
If € A( 41 ) has the coordinate expression = + - (0< <,

then

= + 9 ‘)= -

1
Proposition 1.1. The above splitting of A( 1 ) induces the splitting
(=)
A= A
:0

where the projections are given by
(= . (-
O (" ) iAoy = A
(=) ,
(for O see Appendix).
the projection

Let us study explicitly the projection maps. We denote with

of the above splitting on the summand with the highest degree of the horizontal
). In other words, we have

factor (which, of course, cannot be greater than

by = —

We denote also the projection complementary to
. Let € A( +1 )

Now, we evaluate the coordinate expression of

Ifo <, then we have the coordinate expression
k

—1 —h LA A A R+l A A

= h41 L o

. . . 0 . . .
where the coordinate functions are sections of A 41, and the indices’range is 0 <
| 1< ,0< < . Weremark that the indices are suppressed if = , and
= 0. We have

the indices _JJ are suppressed if
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If , then we have the coordinate expression

— =1 —k—ntl 1A A Bemtl A 1+1 A A n

141
1 k—n4r I+ R —k—ntl

0
where the coordinate functions are sections of A 41, and the indices’range is 0 <
| 1< ,0< < . Weremark that, the indices  are suppressed if = . We

have

( ) — E 1 1 —1 —k—n4i—-1 I
Lt e T T T
LA - A k—ntl A LA A n

—1 —k—n-+4i

where the sum 1s over the subsets

Ul

—k—n4l

and 7 stands for suppressed indexes (and corresponding contact forms) belonging
to one of the above subsets.

Example 1.1. Here we evaluate the coordinate expressions of the projection in

the case = 2. Suppose that € A2 1) has the coordinate expression

= A+ A+ A+

AN+ AN+ A\

If =1,then = =1, A =0and

()= +2 D RIS

( + +2 4 ) A
If > 2 then
=+  + 4
+ + 4 ) A

Horizontal and vertical differential

The exterior differential together with the contact maps yield two derivations

(‘of degree one along  t17) of A (see [15]). Namely, we define the horizontal and
vertical differentials to be the sheaf morphisms

= a41® — O A AL = a0 — o A=Ay
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It can be proved (see [15]) that ~ and  fulfill the properties
2 = 2 = 0 ¢ —|— ¢ = 0
=+ = ( +1)*O
(41)7e =0 of )'=( 41 )%

The action of and on functions : Y — and one—forms on Y
uniquely characterises and . We have the coordinate expressions

=) =+ 4 )

Direct limit

The sheaf injections (> ) provide several inclusions between the sheaves
of forms previously introduced. This yields several injective systems, whose direct
limit is studied here.

We define the presheaves on Y
A =1limA (A)' li (A)
= un = (+1)

By simple counterexamples, it can be proved that the above presheaves are not

sheaves in general, because the gluing axiom fails to be true.

Remark 1.1. For any equivalence class [ ] € A there exists a distinguished
(0

representative € A whose order is minimal. The same holds for A and A .

Accordingly, we shall often indicate by € A (without brackets) such a minimal

section. U
Lemma 1.2. We havelimA( ;; y=limA = A.
— —
Proof. In fact, we have the inclusions A CA( 41 yCA 11 d
Theorem 1.1. We have the natural splitting
(-
A=Ep A
:0
Proof. It comes from the above lemma and the splitting of proposition 1.1. O

Remark 1.2. The above splitting represents one of the major differencies between
the finite order and the infinite order case. As we shall see, in the infinite order
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formulations one has to deal with quotients of A by sheaves of contact forms. The
above splitting allows us to identify such quotients with ‘more concrete’ spaces
(see section 3). The situation is much more complicated in the finite order case

for the lack of such a splitting. In fact, the inclusion A C A¢ 41 ) is a proper
inclusion, and we are in the bad situation described in remark A.1. Nevertheless,
by means of the splitting of proposition 1.1, we are able to recover in the finite
order case almost all features of infinite order formulations, but in a much more

difficult way (see [21]). ]

Proposition 1.2. The sheaf morphisms , , , , admit direct limits. Namely,
such direct limits turn out to be the presheaf morphisms

Ao A [ ]e] ]
+1 +1
A= A [ ]=] ] A= A [ ]=] ]

Note that the map of the above proposition turns out to be the projection
of the splitting of theorem 1.1 on the factor with the highest horizontal degree; in
other words, the direct limit of the projection is the projection of the splitting of
the direct limit.

We observe that we did not indicate the degree of | and . This is both
for a matter of ‘tradition’ and not to make too heavy the notation.

Finally, next proposition analyses the relationship of  and  with the splitting
of the above theorem.

Proposition 1.3. We have

Proof. From the action of |  on functions and local coordinate bases of forms.

d

2. INFINITE ORDER VARIATIONAL SEQUENCE

In this section, we introduce a new infinite order approach to variational se-
quences. This infinite order approach is based on the finite order approach by
Krupka [9]. Indeed, as it is proved in [22], this infinite order approach turn out to
be the direct limit of Krupka’s finite order approach.
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The de Rham exact sheaf sequence on Y passes to direct limits. More pre-
cisely, 1t yields the following exact presheaf sequence

0 1
0 A A A

which is said to be the infinite order de Rham sequence. Of course, this sequence
does not become trivial after a certain value of

Now, we introduce an exact natural subsequence of the de Rham sequence,
which 1s of particular importance in the variational calculus, although being de-
fined independently (see [9]).

We consider the restriction |, of the projection  to the subsheaf A C

r

A( 41 ). We introduce a new subsheaf of A . Namely, following Krupka [9, 10]

we set © to be the sheaf generated (in the sense of [23]) by the presheaf ker |,
A,

+ ker |, . In other words, we set
A

r

O = ker |, + ker _|k
Ay

r

Remark 2.1. Of course ker |, is a sheaf. But, in general, the gluing axiom fails
A

r

to be true for ker |« . Anyway, in the particular case when dim X = 1 and
i -1 ) -1
1, thesum ker |, + ker |« turnsout to be adirect sum, and ker |,
r Ar Ar
turns out to be a sheaf. U

Remark 2.2. If0 < < [ then ker |, C ker |. ,sothat ® =ker |, .
A, A, Ay
Moreover, we have

ker |» ={ €A |( )* =0forevery section :X =Y}
A

r

This shows that for <  the sheaf ©® consists of forms which do not give
contribution to action-like functionals [9, 15, 21]. U

Thus, we have the injective system of sheaves {© *1. We define the presheav-
esonY

© =lm6o
—
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It is clear that © is a subpresheaf of A. Thus, we say the following natural
subsequence

1 2
0 S) S) S)

to be the infinite order contact subsequence of the infinite order de Rham sequence.

Theorem 2.1. The infinite order contact subsequence is exact.

Proof. First, we observe that remark 1.1 still holds in the case of ©. So, to any
[ ]€ Osuch that € © we apply the contact homotopy operator [9], which is the
restriction of the standard homotopy operator of Poincaré’s lemmato ® C A to

find a local potential [ | € @1 of [ ] O

Now, we introduce a bicomplex by quotienting the infinite order de Rham se-
quence by the infinite order contact subsequence. We obtain a new sequence, the
mnfinite order variational sequence, which turns out to be exact.

Theorem 2.2. The following diagram

0 0 0 0 0
1 2
0 0 0 0 0 o
0 1 2
0 A A A A
0 1 1 2 2
0 A—S A8 po_* L I C .
0 0 0 0 0

where £ are the quotient morphisms and the vertical arrows are natural inclusions
or quotient projections, is commutative. Moreover, rows and columns are exact
presheaf sequences.

Proof. We have to prove only the exactness of the bottom row of the diagram.
But this follows from the exactness of the other rows and of the columns. a

Definition 2.1. We say the bottom row of the above diagram to be the infinite
order variational sequence associated with the fibred manifold Y — X (see [9]).
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The above construction is yielded naturally just by the differential structure
and the fibring of the underlying manifold. On the other hand our attention to
the bottom line is inspired by the variational calculus.

It is possible to prove [22] that the infinite order variational sequence is the
direct limit of the injective system of Krupka’s finite order variational sequences.

U

We have an interesting result about the exactness of the infinite order variational

sequence. Let us consider the cochain complex of global sections

Er_1

0 11 £ )
0 % Ay (A O)y (A B)y ——

and denote by y,4 the -th cohomology group of the above cochain complex.

Corollary 2.1. For all > 0 there is a natural isomorphism

VS~  de Rham Y

Proof. This comes from the analogous result about the finite order variational
sequence [9, 22]. O
3. REPRESENTATION OF THE VARIATIONAL SEQUENCE

In this section we provide a sequence which is isomorphic to the variational
sequence and is more easily interpreted in terms of the calculus of variations.
First of all, we analyse the case 0 <

Proposition 3.1. Let 0 < . Then, we have the natural isomorphism
(0 )
A= A []-> ()

Proof. By remark 2.2 the above map is well defined. Clearly, if ( ) = ( ),

then — € ker = O, so the map is injective. Moreover, the map is surjective
(0 )
because is surjective on A . a
Next, for we study the quotient spaces A ©.

(- -1
We denote by (A ) (see Introduction) the sheaf generated by the
(- -1 (- -1
presheaf (A ). This means that the sheaf (A ) consists of sec-
(- -1
tions  which are of the local type = with € A

Moreover, we set

T PN
( )i=lim )

where we introduced the symbol  for evident practical reasons.
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Lemma 3.1. Let . Then, we have the isomorphism

-1 (- =1 -1
(ke L)c (A w)C (ke L) 0
A, Argr
Proposition 3.2. Let . Then, we have the natural isomorphisms

. (= ) (= -1
A0 A /(A )] ()]

Theorem 3.1. The infinite order variational sequence is isomorphic to the fol-
lowing sequence

0 : (01) 5 3 (0 ) 3
0 S N N1 SNy N—
s ) (-1 g : ()@ -1 g
AT A ) TN A )
where & = if0 < < -1, and £ Ch=[ ()i

Proof. If 0 < < —1 then we have

where the last passage is due to proposition 1.3.
If > then we have

and

hence the result. O
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4. REPRESENTATION OF THE ‘SHORTENED’ VARIATIONAL SEQUENCE

As far as we know, there is no interpretation of the —th degree terms of the
variational sequence in terms of the calculus of variations, for >+ 3. For this
reason, we restrict our interest to a ‘shortened’ version of the representation of the
variational sequence of the previous section. Namely, we consider the subsequence

01 02
0 /0\ . (A) . (A) .
0 - 1 1 -1 5 1 1 -1
. (A) é. (A)/_(( A )) i <‘,~'+1((A)/_(( A ))) 0
of the infinite order variational sequence.

The task of the next subsections is to give a natural isomorphism between
the two quotient spaces of the above ‘shortened’ variational sequence and some
presheaves of forms on jet spaces. In this way, we are able to give explicit coordi-
nate expressions for the morphisms & and & 1.

Euler morphism
. . a),—a =n . . .

Here we find an isomorphism of A / (A ) with a direct limit of an in-
jective system of sheaves of forms on jet bundles. To this aim, we use a result by
Kolaf [7].

To proceed further, we introduce new notation and recall a few results from the
theory of jets [12].

On any coordinate open subset U C Y (with coordinates adapted to the fibring)
we set

= 1A A =,
We recall the natural inclusion 4+ Y — Y which is characterised by
o 4 = ( )foranysection : X —>Y.

Now, consider the fibrings Y — X and pr;: X x — X. For > 0 there
is the well-known isomorphism (X x )~ *X x | where *X isthe —th
order cotangent bundle of X. Let : Y —  be a map. Then we define the
formal derwative of  to be the function

D() = e} : +Y—> *X x

Let () be local coordinates on  *X, 0 < | | < . Then we set

D = OD( )

The definition of prolongation yields D o 4| = ( o ); of course, this
equality uniquely characterises D . We can easily verify that D oD =D , . In

the particular case when | | =1 (so that we can identify = ) then we have the
coordinate expression

D =(a4)

+ 4 7 0<|I<
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which coincides with the standard first order formal derivative expression. The
coordinate expression of D can be easily derived from the inductive formula

0
D . =D D . A Leibnitz’ rule holds for D (see [15]);if € A , then we have

|
D( )= > —'—'!D_ D
+ =

If a vertical vector field :Y — Y has the expression = , then its
natural prolongation : Y — Y has the expression =71 -

1 (© (1)
Theorem 4.1. (First variation formula [7]) Let € A A A C A . Then
there is a unique pair of elements

(10) (0 ) (10) (0 )
EA(zO)/\AZ EA(2 )/\Az
such that

i ( 2 )* — _ ;

(10 (0 )

1. is locally of the form = , with € A (2 -1 - A Ao
Remark 4.1. Thus, and are uniquely defined. However, it 1s possible
to determine a global fulfilling the above conditions, but is not uniquely
determined unless dimX = 1or = 1. For = 2, we are able to characterise a
unique by means of an additional requirement (see [7] for a complete discussion).

Ol

In coordinates, if = — A | then we have the well-known expression

(2) =(-Dldp - A

Proposition 4.1. We have the injective sheaf morphism

)@ -y

Proof. The morphism ;1 is well-defined. In fact, it is easily seen that it does
not depend on the representative of the equivalence class [ ]. Moreover, due to
the uniqueness of the decomposition in the first variation formula, annihilates
1 -1
sections [ ] € _(( A )).
The morphism is also injective. In fact, suppose that = . Then by the
first variation formula we have — = — _hence [ — ]=0. O
The final step is to characterise the image of 1. Let us define the following
presheaf

1o
Aoy =1lm A



498 R. VITOLO

The claimed result is given by the following theorem.

Theorem 4.2. We have the sheaf isomorphism

() __a -1
+1ZA ( A )—)8

where £ is the presheaf

Proof. The image of 11 is characterised by the first variation formula. Namely,
we have

1) (1 -1 (10) (o)
8:(/\—1— ( A ))ﬂ(/\(.o)/\ A)

. . Qo () 1) 1 -1
But we have the inclusion ( A ¢ yA A )C( A + ( A )), hence the result.

d

Helmholtz morphism
. . R L . .
Here we find an isomorphismof & 41( A /(A )) with a direct limit of an
injective system of sheaves of forms on jet bundles. To this aim, we make use of
the second variation formula [21].

Lemma 4.1. We have the natural injection

)

(2 -1

T N A ) B o L S Y S PO

Proof. It is a direct consequence of the first variation formula and = — .

O
(1o (10) (0 ) , ,

Lemma 4.2. Let € A A A ( oA A . Then, there is a unique element

(o (10 0 )
€EAp )@ Ap oA A

such that, for all Y — Y, we have

~= 9

where = .-
Proof. Let U CY be an open coordinate subset, and suppose that we have the
expression on U

- - A A 0<l<
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Then we have the coordinate expression

o (g )

Let us set
-1
- |
~ _ _ LG I L
= > (=D @ A

| |=0 ——
Then, by the arbitrariness of ,  is the unique morphism fulfilling the conditions
of the statement on U. By uniqueness, we deduce that is Intrinsic. a

Theorem 4.3. (Second variation formula [21]).
(10)  (10) 0
Let € A N A oyAN A . Then, there is a unique pair of elements

(10) 10) (0 ) (20) (0 )
EA(2 )/\A(ZO)/\AZ EA(2 )/\Az
such that
it = -
il. =12 (~ ), where  is the antisymmetrisation map.
(2 -1
Moreover, is locally of the type = , where € A o _1.

Proof. It is clear that is uniquely determined by  and the choice =
12 ().

Let us denote by p, the Lie derivative with respect to the field (x 11) . We
denote by p, the iterated Lie derivative. It can be easily seen [15] by induction

on | | that, on a coordinate open subset U C Y, we have

= - A A== (A A== A (- A 42
which yields the thesis by the Leibnitz’ rule. a
Remark 4.2. Thus, and are uniquely defined. However, in general, we

do not know whether it is possible to determine a global  fulfilling the above
conditions. If dim X = 1, then there exists a unique  fulfilling the above condi-
tions. Moreover, if = 2, we are able to characterise a unique by means of an
additional requirement [8]. U

Proposition 4.2. We have the injective morphism

~ ) __ @1 -1 (10) (10) (0 )
28 (A (A )= AANAgn A e

Proof. ;5 is well defined due to the uniqueness of the decomposition of the
second variation formula. The injectivity of ;2 follows from the above theorem,
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because if and fulfill  , _ =, ,, then we have

vﬂ_ v oo |:|

Let us set H :=1im ;5. We have no characterisation of H. But the above
proposition allows us to select a distinguished presheaf containing H. More pre-
cisely, we can state the following theorem.

(1 (1 —1)
Theorem 4.4. The sheaf & {1( A / )) is isomorphic to the image

(10) (10) (0 )
HC A A A(.o)/\ A

of the injective morphism  1s.

5. VARIATIONAL SEQUENCE AND THE CALCULUS OF VARIATIONS

We can summarise the results of the above sections in the following theorem.
(0 )
Let us set £ := A .
Theorem 5.1. The shortened infinite order variational sequence is isomorphic to
the exact sequence

0 (01) (0 -1)
0 At A2 A he-tg Moy 0

where the maps & and H are defined as the maps which make the following diagram
commuting

+1 41

©0)——0

(A
\ J N J
n410 n41 n+420 n+2
£

H 0

Remark 5.1. The natural representation of the quotient sequence as a sequence
of sheaves of ‘concrete’ forms yields a clear interpretation in terms of the calculus

of variations. U
We have the following coordinate expressions.
If €L, with = | then
)=y - A
If €& with = A, then

2 +1-| | ( 4+ )
HO)=5| - - X uH=Ee ) A

| |=0
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We say € L to be a Lagrangian type morphism. We observe that, due to the

exactness of the variational sequence, a variationally trivial Lagrangian is locally
0 -1
of the form , where € ( A :

We say the map £ : £ — € to be the Euler operator. We say £( ) € € to
be the Euler morphism associated with . We say € € to be an FEuler type
morphism.

We say the map K : € — H to be the Helmholtz operator. We say H( ) € H
to be the Helmholtz morphism associated with . We observe that, due to the
exactness of the variational sequence, if H( ) = 0 then there exists (locally) a
Lagrangian  such that £( ) = 0. Moreover, if Y2 (Y) = 0, then it is
possible to find a global Lagrangian fulfilling the above condition.

We recall from the above section that

+1io w([ D= -

t20 w28l D)= o
+1

where " = ().

Wessay - (see theorem 4) to be a (local) momentum associated with the Euler
morphism induced by

Let € L be a Lagrangian type morphism. Then we say = + to be
a Poincaré—Cartan form associated with the Lagrangian . It is evident that the
well-known problem of the uniqueness of the Poincaré-Cartan form is equivalent
to the problem of the uniqueness of the momentum for

Wesay | . (see theorem 4.3) to be a (local) momentum associated with the
Helmholtz morphism induced by

Remark 5.2. Our names given to the above objects (| , excepted) are justified
by the fact that this objects turn out to be just the homonymous objects of the
standard calculus of variations on fibred manifolds. As for ., it is a new object
introduced in [21] (see also [8]) whose interpretation in terms of the calculus of
variaitons is still unknown. U

Remark 5.3. In the direct approach to Lagrangian formalism one starts with a
Lagrangian € £ and fills in the further vertices of the bicomplex (in the direction
bottom-up, left-right) by means of the maps of the variational sequence and by
the surjectivity of the projections. Of course, the objects in the center and top
row need not to be unique.

In the inverse approach to Lagrangian formalism one starts with a Euler type
morphism € £ and finds, under the Helmholtz closure condition, a local La-

0 -1

grangian, which is defined up to the horizontal differential of a form € ( A )
Clearly, this form yields the filling in procedure as in the direct case; but, now,
some objects are defined up to a gauge.

In [13] we studied the Lagrangian formalism for the mechanics of one parti-
cle associated with a geometric model of Galiler spacetime. Namely, a metric,
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a connection and a spacetime 2-form yield directly a global dynamical 2—form

€ /2\ and a global € &£. Thus, we are able to fill in the bicomplex starting
equivalently with  or . Therefore, the objects recovered on left (Lagrangian,
Poincaré-Cartan form and momentum) are defined only locally and up to a gauge.
We proved that this approach is of fundamental importance for the quantisation of
mechanics. We hope that it could be of the same importance for the quantisation

of fields. ]

Appendix: Direct sums and exterior products

Let  be a vector space such that dim = . We define the box product (see
also [6]) of linear morphisms : — 1is defined to be the linear map
g A —=A

A A = A A )

where is the set of all permutation of order . The box product fulfills

g =0 ¢ Vv e ;

in particular, if | = --- = = ,then 0 = !A . So, O yields a map
®(End( )) = End(A ).

We have a remarkable feature of the box product. Suppose that = 16 o,
with 1: — jand 5: — 4 the related projections. Then, we have the
splitting

(3) A= P A an
+ =

where A 1 A A o is the subspace of A generated by the wedge products of

elements of A | and A 3. The projections related to the above splitting turn
out to be the maps

|:|(1 2):/\ — A 1 AN o
() 7 . . .
where O (1 2) =5 0 ,with = ;if1< < and = ,if +1<
< +

Remark A.1. Let ' C  be a vector subspace, and set | := {( /), 4 :=
2( ). Then we have

! !

C {® 4

but the inclusion, in general, 1s not an equality.
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