Previous |  Up |  Next

Article

References:
[1] Bernfeld S., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York (1974). MR 0445048 | Zbl 0286.34018
[2] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–85. MR 0947921 | Zbl 0677.54013
[3] Brezis H.: Analyse Fonctionelle. Masson, Paris (1983). MR 0697382
[4] Cabada A., Nieto J.: Extremal solutions of second order nonlinear boundary value problems. Appl. Math. Comp. 40 (1990), 135–145. MR 1080229
[5] Chang K. C. : The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33 (1980), 117–146. MR 0562547 | Zbl 0405.35074
[6] DeBlasi F. S., Myjak J.: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9–31. MR 0834135
[7] Dunford N., Schwartz J.: Linear Operators I. Wiley, New York (1958).
[8] Erbe L., Krawcewicz W.: Boundary value problems for differential inclusions $y^{^{\prime \prime }}\in F\left(t,y,y^{^{\prime }}\right)$. Annales Polon Math. 56 (1990), 195–226. MR 1114171
[9] Gaines R., Mawhin J.: Coincidence Degree and Nonlinear Differential Equations. Springer Verlag, Berlin (1977). MR 0637067 | Zbl 0339.47031
[10] Gao W., Wang J.: On nonlinear second order periodic boundary value problem with Caratheodory functions. Annales Polon Math. 62 (1995), 283–291. MR 1356797
[11] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer Verlag, New York (1977). MR 0473443 | Zbl 0361.35003
[12] Himmelberg C.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972). MR 0303368 | Zbl 0225.54049
[13] Kandilakis D., Papageorgiou N. S.: Dirichlet and periodic problems for second order differential inclusions. Houston J. Math. – to appear.
[14] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York (1984). MR 0752692 | Zbl 0556.28012
[15] Kravvaritis D., Papageorgiou N. S.: Boundary value problems for nonconvex differential inclusions. J. Math. Anal. Appl. 185 (1994), 146–160. MR 1283047 | Zbl 0817.34009
[16] Leela S.: Monotone method for second order periodic boundary value problems. Nonl. Anal. – TMA 7 (1983), 349–355. MR 0696734 | Zbl 0524.34023
[17] Marano S.: Existence theorems for multivalued boundary value problems. Bull. Austr. Math. Soc. 45 (1992), 249–260. MR 1155483
[18] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonl. Anal. – TMA 4 (1980), 985–999. MR 0586861
[19] Nieto J.: Nonlinear second order periodic value problems with Caratheodory functions. Appl. Anal. 34 (1989), 111–128.
[20] Nieto J., Cabada A.: A generalized upper and lower solutions method for nonlinear second order ordinary differential equations. J. Appl. Math. Stoch. Anal. 5 (1992), 157–166. MR 1214298 | Zbl 0817.34016
[21] Nkashama M. N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first–order ordinary differential equations. J. Math. Anal. Appl. 140 (1989), 381–395. MR 1001864 | Zbl 0674.34009
[22] Omari P.: A monotone method for constructing extremal solutions of second order scalar boundary value problems. Appl. Math. Comp. 18 (1986), 257–275. MR 0827837 | Zbl 0625.65075
[23] Omari P., Trombetta M.: Remarks on the lower and upper solutions method for second and third order periodic boundary value problems. Appl. Math. Comp. 50 (1992), 1–21. MR 1164490 | Zbl 0760.65078
[24] Papageorgiou N. S.: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math.. Sci. 10 10 (1987), 433–442. MR 0896595 | Zbl 0619.28009
[25] Papageorgiou N. S.: On measurable multifunctions with applications to multivalued equations. Math. Japonica 32 (1987), 437–464. MR 0914749
[26] Papageorgiou N. S. : Decomposable sets in the Lebesgue–Bochner spaces. Comm. Math. Univ. Sancti Pauli 37 (1988), pp. 49–62. MR 0942305 | Zbl 0679.46032
[27] Papageorgiou N. S., Papalini F.: Periodic and boundary value problems for second order differential equations. Trans. AMS – to appear. MR 1818423 | Zbl 0986.34011
[28] Vrabie I.: Compactness Methods for Nonlinear Evolutions. Longman Scientific and Technical, Essex, U.K. (1987). MR 0932730 | Zbl 0721.47050
[29] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903. MR 0486391 | Zbl 0407.28006
Partner of
EuDML logo