[1] Baxley, J. V.:
Existence theorems for nonlinear second order boundary value problems. J. Differential Equations 85 (1990), 125–150.
MR 1052331 |
Zbl 0704.34021
[2] Erbe, L. H., Qingai Kong and Zhang, B. G.: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics, 1994.
[3] Fabry , Ch., Habets, P.:
Upper and lower solutions for second order boundary value problems with nonlinear boundary conditions. Nonlinear Analysis T.M.A. 10 (1986), 985–1007.
MR 0857735
[4] Gaines, R.:
A priori bounds for solutions to nonlinear two-point boundary value problems. Applicable Analysis 3 (1973), 157–167.
MR 0393630 |
Zbl 0276.34014
[5] Gaines, R., Mawhin, J.:
Ordinary differential equations with nonlinear boundary conditions. J. Differential Equations 26 (1977), 200–222.
MR 0463557
[6] Garner, J. B., Shivaji, R.:
Diffusion problems with a mixed nonlinear boundary conditions. Nonlinear Analysis T.M.A. 148 (1990), 422–430.
MR 1052353
[7] Guenther, J. R. B., Lee, J. W.:
Some existence results for nonlinear integral equations via topological transversality. J. Integral Equations and Appl. 5 (1993), 195–209.
MR 1229437
[8] Henderson, J.:
Boundary Value Problems for Functional Differential Equations. World Scientific, 1982.
MR 1375459
[9] Ntouyas, S. K., Sficas, Y., Tsamatos, P. Ch.:
An existence principle for boundary value problems for second order functional differential equations. Nonlinear Analysis T.M.A. 20 (1993), 195–209.
MR 1202200
[10] Ntouyas, S. K., Sficas, Y., Tsamatos, P. Ch.:
Boundary value problems for functional differential equations. J.Math.Anal.Appl. 199 (1996), 213–230.
MR 1381388
[11] Oregan, D.:
Weak and strong topologies and integral equations in Banach spaces. Ann. Polon. Math. LXL3 (1995), 245–260.
MR 1333250
[12] Rachůnková, I.:
Boundary value problems with nonlinear boundary conditions. acta Math. Inform. Universitatis Ostraviensis 2 (1994), 71–77.
MR 1309065
[13] Tsamatos, P. Ch., Ntouyas, S. K.:
Some results on boundary value problems for functional differential equations. Internat. J. Math. and Math. Sci. 19 (1995), 335–342.
MR 1375998