Previous |  Up |  Next

Article

Keywords:
Lie groupoids; semi-holonomic jets; higher order connections; total connections; simple connections
Summary:
A total connection of order $r$ in a Lie groupoid $\Phi $ over $M$ is defined as a first order connections in the $(r-1)$-st jet prolongations of $\Phi $. A connection in the groupoid $\Phi $ together with a linear connection on its base, ie. in the groupoid $\Pi (M)$, give rise to a total connection of order $r$, which is called simple. It is shown that this simple connection is curvature-free iff the generating connections are. Also, an $r$-th order total connection in $\Phi $ defines a total reduction of the $r$-th prolongation of $\Phi $ to $\Phi \times \Pi (M)$. It is shown that when $r>2$ then this total reduction of a simple connection is holonomic iff the generating connections are curvature free and the one on $M$ also torsion-free.
References:
[1] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. C.R.A.S. Paris 239 (1954), 1762–1764. MR 0066734 | Zbl 0057.15603
[2] Ehresmann, C.: Sur les connexions d’ordre supérieur. Atti V$^\circ $ Cong. Un. Mat. Italiana, Pavia - Torino, 1956, 326–328.
[3] Kolř, I.: Some higher order operations with connections. Czechoslovak Math. J. 24 (99) (1974), 311–330. MR 0356114
[4] Kolř, I.: A generalization of the torsion form. Čas. pěst. mat. 100 (1975), 284–290. MR 0383287
[5] Kolř, I.: Torsion-free connections on higher order frame bundles. (to appear).
[6] Kolř, I., Michor, P. W., Slov k, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. MR 1202431
[7] Kolř, I., Virsik, G.: Connections in first principal prolongations. (to appear).
[8] Que, N.: Du prolongement des espaces fibrés et des structures infinitésimales. Ann. Inst. Fourier, 17, (1967), 157–223. MR 0221416 | Zbl 0157.28506
[9] Virsik, J. (George): A generalized point of view to higher order connections on fibre bundles. Czechoslovak Math. J. 19 (94) (1969), 110–142. MR 0242187
[10] Virsik, J. (George): On the holonomity of higher order connections. Cahiers Top. Géom. Diff. 12 (1971), 197–212. MR 0305294
[11] Yuen P. C.: Higher order frames and linear connections. Cahiers Top. Géom. Diff. 12 (1971), 333–337. MR 0307102 | Zbl 0222.53033
Partner of
EuDML logo