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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 183 { 200TOTAL CONNECTIONS IN LIE GROUPOIDSGeorge VirsikAbstract. A total connection of order r in a Lie groupoid � overM is de�ned asa �rst order connections in the (r�1)-st jet prolongations of �. A connection in thegroupoid � together with a linear connection on its base, ie. in the groupoid �(M),give rise to a total connection of order r, which is called simple. It is shown thatthis simple connection is curvature-free i� the generating connections are. Also, anr-th order total connection in � de�nes a total reduction of the r-th prolongationof � to ���(M). It is shown that when r > 2 then this total reduction of a simpleconnection is holonomic i� the generating connections are curvature free and theone on M also torsion-free.The concept of higher order connections in di�erential geometry was introducedby Ehresmann who used Lie groupoids rather than principal bundles to studygeometric structures (c.f. [Ehresmann 56]). It is a well known fact that the categoryof Lie groupoids and that of principal bundles are equivalent in the sense that anyconcept or result obtained in the \language" of one of them is readily translatedinto the \language" of the order. Roughly speaking, if P is a principal bundle, wecan associate with it the Lie groupoid PP�1, and conversely, if � is a Lie groupoidand a the source map, then �x = f� 2 � : a� = xg for any element x of the base,is a principal bundle. Many results on higher order connections and associatedgeometric objects have been obtained since the pioneering work by Ehresmann,some using Lie groupoids, some using principal bundles and their prolongations asthe basic geometric structure on which to study higher order connections. Recentapplications in gauge theory, including the higher order case, have also contributedto a renewed interest in these studies.The present paper uses the Lie groupoid approach to r-th order total connec-tions de�ned as �rst order connections in the (r � 1)-st prolongation of the givenLie groupoid. Though it is true that an r-th order total connection induces anr-th order connection in the sense of Ehresmann but in general not vice-versa,it turns out that some results about total connections can be obtained parallellywith those known for higher order connections in the sense of Ehresmann (c.f.1991 Mathematics Subject Classi�cation : 53C05, 58A20.Key words and phrases: Lie groupoids, semi-holonomic jets, higher order connections, totalconnections, simple connections.Received September 29, 1994.



184 GEORGE VIRSIKProposition 3 below). Kolá© was the �rst to study explicitly the relation betweenthese two approaches to higher order connections, and [Kolá© 74], written in theLie groupoid language, was also the starting point for the present paper. The ba-sic method used is that of \transporting connections along functors" includingthose which arise from a connection as reductions of some prolongations of Liegroupoids. These reductions associated with higher order connections were �rstintroduced and studied in [Que 67]. We generalise some results from [Kolá© 74,75], notably about problems concerning integrability of higher order connectionsobtained from a �rst order connection in the groupoid together with a linear con-nection on its base. These results are applied to the special case of the Lie groupoidassociated with the frame bundle of a given manifold, and compared with thosealready obtained, for instance in [Kolá©, to appear].Manifolds and maps shall always be smooth { ie. C1 { and �nite dimen-sional. Following [Kolá©-Michor-Slovák] Mf denotes the category of such man-ifolds, Mfm the subcategory of Mf consisting of m-dimensional manifolds andlocal di�eomorphisms between them. FM will be the category of �bred mani-folds p : E ! M (ie. surjections of maximal rank) and �bre preserving maps,and FM(M ) � FM for a �xed manifoldM will denote the subcategory of �bredmanifolds over a �xed base M with morphisms as maps which induce the identityon the base. As usual, the �bre p�1(x) � E will also be denoted by Ex. If C isany of these categories, we shall use the term \C-morphism" or \C-equivalence"when referring to C. We shall work mainly with the category of Lie groupoids overa �xed base M and smooth functors over the identity on M (c.f. [Que 67]).Let F and G be two functors FM(M ) ! FM(M ). For a given object p :E ! M of FM(M ) we shall denote by F(E) ! M and G(E) ! M its imagesunder F and G respectively. F is said to be a subfunctor of G, written F � G,if for each p : E ! M the �bred manifold F(E) ! M is a �bred submanifoldof G(E) ! M [ie. F(E) � G(E) is a submanifold and the projection F(E) isthe restriction of G(E) !M ], and for each morphism h : E ! E0 the morphismF(h) : F(E)! F(E0) is the restriction of G(h) :G(E)!G(E0). In other words,F is a subfunctor of G, if there is a natural transformation from F to G which isa regular embedding for each object of FM(M ). Also, if F is a subfunctor of G,F000 a subfunctor ofG000 then a natural transformation � : F!G is said to preservethese subfunctors if it is at the same time a natural transformation � : F000 !G000.For two manifoldsM and N , denote as usual by Jr(M;N ) the manifold of allholonomic r-jets (r � 1) from M to N , and write J(M;N ) instead of J1(M;N ).Denote also by � : Jr(M;N )!M and � : Jr(M;N )! N the source and targetmaps respectively, by Jrx(M;N ) � Jr(M;N ) the submanifold of jets with sourcex, and by Jrx(M;N )y � Jr(M;N ) the submanifold of jets with source x and targety. Similarly for the manifolds eJr(M;N ) and �Jr(M;N ) of non-holonomic and semi-holonomic jets respectively (c.f. [Ehresmann 54]). We shall use the symbol � todenote composition of jets, ie. if Z = jrxf 2 Jr(M;N ) and Y = jryg 2 Jr(N;P ),y = f(x), then Y �Z = jrx(g�f) 2 Jr(M;P ) with an appropriate extension to non-holonomic and semi-holonomic jets. Also, jrx(t 7! f(t)) will sometimes stand forjrxf , and we shall use the abbreviated notation jrx = jrx(t 7! t) and jrx[c] = jrx(t 7! c)



TOTAL CONNECTIONS IN LIE GROUPOIDS 185for the jets of the identity map and the constant map respectively. Recall that in[Kolá©, Michor, Slovák] Jr is regarded as a functor from the product categoryMfm � Mf into FM. We shall de�ne the functor Jr : Mfm � Mf ! FMrecurrently as J1 = J = J1 and Jr(M;N ) = J1(M;Jr�1(M;N )), Jr(f; g) =J1(f;Jr�1(f; g)) for r > 1 and call elements of Jr(M;N ) iterated jets (of orderr). Of special interest is the case when N = E is the total space of a �bredmanifold p : E ! M . In this case we shall write J(E) = J(M;E) and regardit as the �bred manifold J(M;E) ! M where the projection is the source map� : J1(M;E)!M . In this sense J can be seen as an endofunctor on FM(M ) andsimilarly Jr : FM(M ) ! FM(M ) if it is de�ned as Jr(E) = Jr(M;E) ! M .Moreover, in the context of �bred manifolds, Jr : FM(M ) ! FM(M ) can beseen as an iteration of J, explicitly Jr = J � Jr�1 for r > 1.Thus for a �xed manifold M we have a functor J : FM(M ) ! FM(M )which assigns to the �bred manifold p : E ! M the �bred manifold � : J(E) �J(M;E)!M , and to h : E ! E0 the map J(h) � J(M;h) : J(M;E)! J(M;E0)given by the composition of one-jets J(M;h)Z = j1�Zh � Z. Denoting by I theidentity functor on FM(M ), by O the zero functor on FM(M ) [which assigns top : E !M the \collapsed" �bred manifold id : M !M ], we can regard p, � and� as natural transformations p : I! O, � : J! I and � = p � � : J! O.We have also Jr, the r-th iteration of J, and we shall write also J0 = I andJ�1 = O. For each r � 0 the target map � de�nes a natural transformation�rr�1 : Jr ! Jr�1, and by iteration �rs : Jr ! Js, for any 0 � s � r with �rr = id.This can be further extended to �rs : Jr ! Js, for any �1 � s � r by de�ning�r�1 : Jr ! O as �r � p � �r0. It is not hard to verify that(1) �rs = �qs � �rq for � 1 � s � q � r :Observe that Jr � Js = Js � Jr = Jr+s only for 0 � s � r, whereas J�1 � Js =J�1 = O and Jr � J�1 = Or is the constant functor which assigns to E !M the�bred manifold Jr(M ) ! M and to any morphism of FM(M ) the identity onJr(M )!M . Elements of Jr(E) will be called iterated jets of E !M .The fact that �rs is a natural transformation is expressed by the formula(2) �rsJr(h) = Js(h)�rs for � 1 � s � r ; and any morphism h 2 FM(M ) :Substituting here h = �kl , 0 � l � k for a �xed �bred manifold E ! M , andobserving that now Jr(h) : Jr+k(E) ! Jr+l(E) for 0 � r, similarly Js(h), weobtain(3) �r+ls+lJr(�kl ) = Js(�kl )�r+ks+k for 0 � s � r and 0 � l � k :In case of h = �k�1(E) : �k�1 = �k : Jk(E) ! J�1(E), k � 0, we have Jr(�k) :Jr+k(E) ! Or(E) and similarly Js(�k) : Js+k(E) ! Os(E) unless s = �1 inwhich case Js(�k) = O(E)! O(E). This leads to�rsJr(�k) = Js(�k)�r+ks+k for 0 � s � r; and 0 � k ;(4) �rJr(�k) = �r+k for 0 � r; and 0 � k(5)



186 GEORGE VIRSIKSimilarly, taking s = �1 and 0 � l � k in (3), one obtains(6) �r+lJr(�kl ) = �r+k for 0 � r ; and 0 � l � k :For a �bred manifold p : E ! M denote by J1E � J(E) the space of one-jetsof local sections of p : E ! M , ie. of one-jets j1xs where ps(u) = u for u in aneighbourhood of x. Thus Z 2 J(E)x � Jx(M;E) belongs to J1E i� J(p)Z = j1x.Hence J1 is a subfunctor of J and Z 2 Jr(E)x belongs to eJr(E) i� Jr(p)Z = jrx. Itsiteration gives the subfunctor eJr of Jr, explicitly eJr = J1 � eJr�1 and the elementsof eJr(E) are called non-holonomic r-jets of local sections of E !M ; we let againeJ0 stand for the identity functor.For each �bred manifold E ! M and each r � 0 consider the subset Sr(E) =fZ 2 Jr(E) : �rs(Z) = Jk(�r�ks�k)(Z) whenever 0 � k � s < rg. We obtainagain subfunctors Sr � Jr preserved by �rs : Sr ! Ss. The elements of �Jr(E) =eJr(E)\Sr(E) are the semi-holonomic r-jets of local sections of E !M . Explicitly,Z 2 �Jr(E) i� Z 2� eJr(E) and eitherZ = j1xs for some local section s of �Jr�1(E)!Mand it satis�es J1(�r�1r�2)Z = �rr�1Z(7) or�rs(Z) = Jk(�r�ks�k)(Z) whenever 0 � k � s < r(8) or�rs(Z) = J(�k�1s�1 )�rk(Z) whenever 1 � s < k � r(9)Finally, Jr(E) � �Jr(E) is the subbundle of holonomic r-jets jrxs of local sectionss of E ! M . Thus for each r > 0 we have a sequence of subfunctors Jr � �Jr �eJr � Jr which are preserved by the natural transformations �rs : Jr ! Js. Inwhat follows, higher order jets, prolongations, connections etc. are understood tobe non-holonomic unless otherwise stated.Let � be a �xed Lie groupoid over M , a, b : � ! M the source and targetsurjections, �: M ! � the injection of units. Given an integer r > 0 let e�r =fZ 2 eJr(M;�) : Jr(a)Z = jr�(Z); Jr(b)Z 2 e�r(M )g be the r-th prolongation of�, and let e�r(M ) denote the groupoid of invertible r-jets from M to M , which isthe r-th prolongation of the trivial groupoid M �M . We can associate with � thediagram of functors



TOTAL CONNECTIONS IN LIE GROUPOIDS 187~�r wJr(b)uhhhk ~�r(B)u 4446�u��� ~�r�1 wu��� ~�r�1(B)u [[] �u[[]�u��� �u��� ~�r�2 wu��� ~�r�2(B)u [[] �u[[] �u[[]�u'''* �u'''* �u'''* ~�r�3 wu'''* ~�r�3(B)u hhhj �uhhhj �uhhhj �uhhhj�u��� �u��� �u��� �u��� ... wuAAAD ...u ������u AAC �u AAC �u AAC �u AAC� � � � � �1 wu �(B)u � � � � �[r identical arrows] [r identical arrows]The vertical arrows in (10) stand for direct projections �ss�1 and the slant onesfor their \lifts" J(�ss�1). In general, there are �rs� functors e�r ! e�s (all suitablecombinations of direct and lifted projections). However, because of (3), especially�s�1s�2 � J(�s�1s�2) = �ss�1, we need to consider in (10) as projections e�r ! e�s,0 < s < r only \paths" consisting of a sequence of vertical arrows followed by asequence of slant arrows. For a �xed pairs s < r there are r � s+ 1 of such paths,and they are�r!is = J(�i�1s�1) � �ri : e�r ! e�s; i = s; s + 1; : : : ; r(11) or�r!is = J(�i�1s�1) � �ri : e�r(M )! e�s(M ); i = s; s+ 1; : : : ; r :(12)Observe that these are exactly the functors listed in (9), ie. an element of e�r (ore�r(M )) is semiholonomic exactly when all these r � s + 1 functors e�r ! e�s (ore�r(M )! e�s(M )) coincide for any s < r.In particular, we obtain r-projections �r!i1 : e�r(M ) ! �(M ), i = 1; : : : ; r,hence also(13) �r = (�r!11 ; �r!21 ; : : :�r!r1 ) : e�r(M )! �(M )� � � � ��(M )[r times] :Composing id���r with (�r0;Jr(b)) : e�r ! � � e�r(M ) { and observing that�r!i1 � Jr(b) = J(b) � �r!i1 for i = 1; : : : ; r { we obtain the natural functor����r = (id���r) � (�r0;Jr(b)) =(14)(�r0;J(b) � �r!11 ; : : :J(b) � �r!r1 ) : e�r ! � ��(M )� � � � ��(M )[r times] :



188 GEORGE VIRSIKLet eQk(�) = fZ 2 eJk(M;�) : Jk(a)Z = jkx [x], Jk(b)Z 2 jkx , �k0Z =� (x),(�(Z) = x)g. Then � : eQk(�)!M is a �bred manifold and its sections are calledk-th order connections in � (c.f. [Ehresmann 56]). Recall that eQk can be extendedto a functor eQk from the category of Lie groupoids over M to FM(M ) and thate�k acts on eQk(�) via� 2 eQk; � 2 eQk(�))(�; �) 7! �4 � = (� ��� � ��� jkx [�k0(��1)] � fJk(b)�g�1 ;(15)where ��� denotes the prolongation of composition in � to Jk(M; eQr).A k-th order connection in e�r , (k > 0 and r � 0), ie. a section � :M ! eQk(e�r)will be called an (r; k)-connection in �. It de�nes a reduction of e�r+k, ie. an injec-tive functor [�] : e�r� e�k(M )! e�r+k which is a right inverse of the correspondingcanonical projections via (10). The functor [�] : e�r�e�k(M )! e�r+k is constructedas follows (c.f. [Que 67]). It is uniquely determined by the requirement that it bea groupoid isomorphism of e�r � e�k(M ) onto the subgroupoid �� = f� 2 e�r+k :�4�(x) = �(y) where x = �� = ��(x) and y = b � �r+k0 � = ��(y)g. Here 4denotes the action of e�r+k = (e�r)k on eQk(e�r) de�ned by (15), ie.� 2 eQr+k; � 2 eQk(e�r))(15a) (�; �) 7! �4 � = (� ��� � ��� jkx [�r+kr (��1)]) � fJk(b � �r0)�g�1 ;where ��� again denotes the prolongation of composition in � to Jk(M; e�r) andb � �r0 : e�r ! M is the target surjection in the groupoid e�r (c.f [Virsik 69]).It is a matter of straightforward veri�cation to see that the required groupoidisomorphism e�r � e�k(M )! �� � e�r is given by[�] : e�r � e�k(M )! e�r+k(16) (Z;X) 7! (�(y) �X) ��� j1x[Z] ��� �(x)�1where ��� denotes again the prolongation of composition in e�r and x = �X = �rZ,y = �k0X = b � �r0Z.A connection � :M ! eQk(e�r) can be a holonomic or semi-holonomic k-th orderconnection in the r-th holonomic or semi-holonomic prolongation of �, altogethernine possibilities. For instance, if � is a holonomic k-th order connection in ther-th order semi-holonomic prolongation of �, ie. if � : M ! Qk(��r) then also[�] : ��r ��k(M )! (��r)k. In this case we shall say that � is a connection of type(rS; kH), or brie
y, an (rS; kH)-connection.If 	 is another Lie groupoid over M and ' : �! 	 a smooth functor over theidentity onM , then ' will assign to each (r; k)-connection in � an (r; k)-connectionin 	 of the same type, explicitly, 'h�i : x 7! Jr+k(')�(x). The diagram (10) of



TOTAL CONNECTIONS IN LIE GROUPOIDS 189functors can thus generate all sorts of connections of order k from a given (r; k)-connection. On the other hand, a given (r; k)-connection � itself can serve as agenerator of (s; l)-connections in e�r+k from those in e�r� e�k(M ) via the reduction[�] : e�r � e�k(M )! e�r+k.Most important are the cases when either r = 0 or k = 1.We shall refer to (0; k)-connections in � as k-th order connections in � (if k > 1), to distinguish themfrom total connections in �: An r-th order total connection in � is a connectionof type (r�1; 1) in �. The diagram (10) shows that an r-th order total connectionin � gives rise to a number of s-th order total connections in � (where s < r) viathe functors �r�1!is�1 , i = s � 1; : : : ; r � 1 as in (11), altogether r � s + 1 of them.It will also give rise to the same number of s-th order total connections in M �Mvia the functor Jr(b) followed by �r�1!is�1 , i = s�1; : : : ; r�1 as in (12). Of course,an s-th order total connection in M �M is the same as an (s � 1)-st order totalconnection in �(M ) or on M ; in particular, a second order total connection inM �M is the usual linear connection on M .More important is the r-th order connection in � generated by an r-th ordertotal connection via the map �r�1 : Q1(e�r�1) ! eQr(�), de�ned in [Kolá© 74],which takes Q1(��r�1) into �Qr(�). This indicates that a total connection of orderr is \more" than a connection (in the sense of [Ehresmann 56]) of the same order.The same is suggested byProposition 1 (c.f. also [Kolá©, Virsik]). There exists a canonical FM(M )-equivalence(17) K : Q1(�1)! �Q2(�) �Q1(�(M )) :Proof. De�ne K(Z) = (k1(Z;J(�10)Z);J2(b)Z), where for Z = j1x� we put (c.f.[Kolá© 74]) k1(Z; T ) = j1x(t 7! (�(t) ��� T ) � J(b)�(t)�1). Its inverse is �2 : �Q2(�) �Q1(�(M ))! Q1(�1) also de�ned in [Kolá© 74] by �2(X;Y ) = j1x(t 7! v(t) � �(t) ���v�1(x)), where X = j1xv 2 �Q2(�)x and Y = j1x� 2 Q1(�(M ))x.Observe that J(�10)�2(X;Y ) = j1x(t 7! �10(v(t) � �(t)) ��� �10v�1(x)) = j1x(t 7!�10(v(t) � �(t))) ��� j1x[�10v�1(x)] = J(�10)(X) ��� �20X�1 = J(�10)(X), ie.(18) J(�10)�2(X;Y ) = �21Xsince X is semi-holonomic. Also, J2(b)�2(X;Y ) = j1x(t 7! J(b)v(t)��(t)) = j1x(t 7!�(t)). Since v(t) 2 Q1(�) we have J(b)v(t) = j1t , and so we can conclude that(19) J2(b)�2(X;Y ) = Y :To show that K and �2 are indeed mutually inverse �rst use (18) and theformula (17) of [Kolá© 74] to obtainK(�2(X;Y )) = (k1(�2(X;Y );J(�10)�2(X;Y ));J2(b)�2(X;Y ))= (k1(�2(X;Y ); �21X);J2(b)�2(X;Y ))= (X;J2(b)�2(X;Y )) = (X;Y )



190 GEORGE VIRSIKby (19) . As for the converse, use formula (16) of [Kolá© 74] to obtain�2(K(Z)) = �2(k1(Z;J(�10)Z);J2(b)Z) = Z : �Thus a second order total connection uniquely determines and is uniquely deter-mined by a second order semi-holonomic connection together with a linear connec-tion onM . More generally, an r-th order total connection in � uniquely determinesand is uniquely determined by a second order semi-holonomic connection in e�r�2(ie. a (2S; r � 2)-connection in �) together with a linear connection on M .An r-th order connection C in � de�nes a reduction [C] : � � e�r(M ) ! e�r ,a right inverse of the canonical projections e�r ! � � e�r(M ) de�ned by (10).On the other hand, an r-th order total connection � de�nes a reduction [�] :e�r�1 � �(M ) ! e�r. This � actually gives rise to a whole sequence of reductions[J(�ss�1) � �] : e�s�1 � �(M )! e�s for s = 1; 2; : : : ; r, hence to a reduction(20) f�g : �� �(M )� � � � ��(M )[r times] ! e�rwhich is a right inverse of the natural projection (14). We have then the totalreduction f�g : ���(M )! e�r ;(21) (Z;X) 7! f�g(Z;X; : : : ; X) :Note that we denote both (20) and (21) by the same symbol, ie. write simplyf�g(Z;X) instead of f�g(Z;X; : : : ; X).Two connections in �, C of order r and C1 of order s, can be composed toobtain their product C �C1 which is again a connection in � of order r + s. Thiscomposition is associative (c.f. [Kolá© 74]). Of special interest is the case C � h,where h is a �rst order connection in �. In this case we can write explicitly(22) (C � h)(x) = j1x(u 7! C(u) ��� jru[hx(u)]) with h(x) = j1xhx; hx(u) 2 � ;where the dot ��� denotes the jet prolongation of the groupoid multiplication in �(c.f. [Virsik 71]). If h = �r1 � C then C0 = C � h is called the prolongation of C(c.f. [Ehresmann 56]). An r-th order connection C is said to be decomposable ifC = h1 � � � � � hr, where h1; : : : ; hr are all �rst order connections in �. If thishappens then necessarily(23) hi = �r!i1 �C = J(�i�10 ) � �ri �C : M ! Q1(�) :A decomposable connection C is called simple if h1 = � � � = hr. If C is any r-thorder connection which is semi-holonomic then all the connections (21) coincide;in particular a decomposable connection is semi-holonomic i� it is simple. Also, ifC � h is semi-holonomic then necessarily C � h = C0 and C (as well C0) is simple,



TOTAL CONNECTIONS IN LIE GROUPOIDS 191ie. of the form h� � � ��h and it is holonomic i� h is curvature-free (c.f. [Ehresmann56] and [Virsik 71]).Let now � be an r-th order total connection in �. Recall that this is a �rstorder connection in e�r�1 hence � : M ! Q1(e�r�1) ie. it is a smooth map � :M ! Jr(M;�) = Jr�1(J1(M;�)) satisfying(i) �rr�1 � �(x) = jr�1x (�); (ii) Jr(a) � �(x) = j1x[jr�1x ];(24) (iii) J(b � �r�10 ) � �(x) = j1x :� gives rise to the reduction [�] : e�r�1 � �(M ) ! e�r as well as to the totalreduction (21).Each one of these can be used to transport connections: If �0 isanother r-th order total connection in � and � a connection in �(M ), ie. a linearconnection onM , we get an (r+1)-st order total connection [�]h�0��i = Q1([�])��0 � � in �. If �0 = � we shall write � � �, ie.(25) � � � = [�]h�� �i :The explicit formula for � � � :M ! Q1(e�r) is given by(� � �)(x) = J([�])(�(x); �(x)) or, more precisely,(26) (� � �)(x) = Q1([�])(�(x); �(x)) :The functor [�] : e�r�1��(M )! e�r is given in (16) with k = 1 and e�r�1 replacinge�r, ie. by [�] : e�r�1 ��(M )! e�r(27) (Z;X) 7! �(y) �X ��� j1x[Z] ��� �(x)�1where ��� denotes the prolongation of composition in e�r�1, x = �X = �r�1Z andy = �10X = b � �r�10 Z. Also, [�] is a right inverse of the canonical projectionse�r ! e�r�1 � �(M ), explicitly(28) (�rr�1 � [�])(Z;X) = Z and (J(b � �r�10 ) � [�])(Z;X) = X :Lemma 1. (J(�r�1p�1) � [�])(Z;X) = [J(�r�1p�1) � �](�r�1p�1Z;X) whenever 1 � p < r.Proof. We shall prove it �rst for r = 2 and p = 1. Since the composition in �1satis�es �10(u ��� v) = �10(u) ��� �10(v), we can write(J(�10 � [�])(Z;X) = J(�10)(�(y) �X ��� j1x[Z] ��� �(x)�1)= J(�10)(�(y) �X) ��� j1x[�10Z] ��� J(�10)�(x)�1 = [J(�10) � �])(�10Z;X)



192 GEORGE VIRSIKas required. Applying this to e�r�2 instead of � we get the required result forarbitrary r > 1 and p = r� 1. Assuming this for some p < r we derive it for p� 1since (J(�r�1p�2) � [�])(Z;X) =(J(�p�1p�2) � J(�r�1p�1) � [�])(Z;X) = J(�p�1p�2) � [J(�r�1p�1) � �](�r�1p�1Z;X)= [J(�p�1p�2) � J(�r�1p�1) � �](�p�1p�2 � �r�1p�1Z;X) = [J(�r�1p�2) � �](�r�1p�2Z;X)and this completes the proof. �Note that if we write �(p) = J(�r�1p�1) � � : M ! Q1(e�p�1) for the underlyingtotal connection of order p, the formula just proved can be written as(29) (J(�r�1p�1) � [�])(Z;X) = [�(p)](�r�1p�1Z;X) whenever 1 � p < r :The relation between the reductions [�(s)] and the total reductions f�(s)g isgiven by the recurrence formula(30) f�(s)g(Z;X) = [�(s)](f�(s�1)g(Z;X); X)for s = 2; : : :r, where �(r) = �. By (28) we get from (30) also (�ss�1�f�(s)g)(Z;X) =(�ss�1 � [�(s)])(f�(s�1)g(Z;X); X) = f�(s�1)g(Z;X), ie.(31) �ss�1 � f�(s)g = f�(s�1)g for s = 2; : : : r :If h is a �rst order connection in � and �1; : : : ; �r�1 �rst order connections in�(M ), we can de�ne h � �1 � � � � � �r�1 recurrently via (h � �1 � � � � � �r�2) � �r�1. If� = h��1�� � ���r�1 then h = �r�10 h�i and �i = (J(b)��r�1!ir )h�i, i = 1; : : : ; r�1.Such � will be called a decomposable r-th order total connection. It is called simpleif �1 = � � � = �r�1. A simple total connection of order r is thus � = h � � � � � � � �or brie
y � = h � (��)r�1. Note that in the notation of [Kolá© 74] � � � would bewritten as p(�; �), the simple r-th order total connection h � (��)r�1 as pr�1(h; �),and Proposition 6 of [Kolá© 74] says that a simple total connection is always semi-holonomic. Recall that if an r-th order total connection � is semi-holonomic (ie. oftype (r�1S; 1)) then [�] : ��r�1��(M )! (��r�1)1 whereas � has a semi-holonomictotal reduction if f�g : �� �(M )! ��r � e�r.Proposition 2. Any r-th order total connection � in � has a semi-holonomictotal reduction.Proof. We need to show that f�g satis�es(32) J(�k�1s�1 ) � �rk � f�g = �rs � f�g : �� �(M )! e�swhenever 1 � s < k � r (see the semi-holonomity condition (9)). If 1 � s < k � rwe can write, using (28) and (31),(J(�k�1s�1 ) � �rk � f�g)(Z;X) = (J(�k�1s�1 ) � f�(k)g)(Z;X)= (J(�k�1s�1 ) � [�(k)])(f�(k�1)g(Z;X); X)



TOTAL CONNECTIONS IN LIE GROUPOIDS 193which, by (29), (31) and (30), gives[�(s)](�k�1s�1 � f�k�1g(Z;X); X)= [�s](f�(s�1)g(Z;X); X) = f�(s)g(Z;X) = (�rs � f�g)(Z;X) ;as required. �Note that in Proposition 2 it was essential that f�g was the functor (21) andnot (20).With each total connection � : M ! Q1(e�r�1) we can associate total connec-tions(33) J(J(�s�1p�2) � �r�1s ) � � :M ! Q1(e�p�1) for 1 � p� 1 � s � r � 1as well as the �rst order total connection �(1) = J(�r�10 ) � � : M ! Q1(�). Notethat we have denoted by �(p) the connection (33) corresponding to s = p�1. Thereare in (33) r � p+ 1 p-th order total connections, and � is semi-holonomic i� theconnections (33) depend only on p and not on s (see again the semi-holonomitycondition (9)). Thus � is semi-holonomic i�(34) �(p) = J(J(�s�1p�2) � �r�1s ) � � :M ! Q1(e�p�1) for 1 < p � s � r � 1 ;where �(p) = J(�r�1p�1) � �.In particular, with an r-th order total connection � : M ! Q1(e�r�1) we canassociate r � 1 second order total connections(35) J(�r�1s ) � � :M ! Q1(�1); 1 � s � r � 1 ;where J(�r�1s ) = J(�s�10 ) � �r�1s : e�r�1 ! �1. Hence we get also r � 1 �rst orderlinear connections on M , namely(36) �Ms = J2(b) � J(�r�1s ) � � :M ! Q1(�(M )); 1 � s � r � 1 :Lemma 2.(i) (� � �)(p) = �(p) for p = 1; : : : r;(ii) (� � �)Ms = �Ms for s = 1; : : : r � 1 and (� � �)Mr = �.Proof.(i) From (���)(x) = J([�])(�(x); �(x)) and (28) we conclude that (���)(r)(x) =J(�rr�1)(� � �)(x) = J(�rr�1)(� � �)(x) = (J(�rr�1) � [�])(�(x); �(x))) =J(pr1)(�(x); �(x))) = �(x), ie. (���)(r) = �. If p � r�1 then (���)(p) = J(�rp�1)�(� � �) = J(�r�1p�1) � J(�rr�1) � (� � �) = J(�r�1p�1) � (� � �)(r) = J(�r�1p�1) � � = �(p).(ii) For s = 2; : : :r � 1 we have (� � �)Ms = J2(b) � J(�rs) � (� � �) = J2(b) �J(J(�s�10 ) � �rs) � (� � �) = J2(b) � J(J(�s�10 ) � J(�r�1s ) � J(�rr�1)(� � �) = J2(b) �



194 GEORGE VIRSIKJ(�r�1s ) � � = �Ms .If s = r we get (���)Mr(x) = J2(b)�J(�rr)�(���)(x) = J2(b)�J(�rr)J([�])(�(x); �(x)) =J(J(b)��rr�[�])(�(x); �(x)) = J(J(b)�J(�r�10 )�[�])(�(x); �(x)) = J(pr2)(�(x); �(x)) =�(x),becauseJ(b � �r�10 ) � [�](Z;X) = J(b)(J(�r�10 ) � �(y) �X ��� j1x[�r�10 Z] ��� J(�r�10 ) � �(x)�1)= J(b)(J(�r�10 ) � �(y) �X = X; ie. J(b � �r�10 ) � [�] = pr2 : �The following result states that simple total connections are practically the onlyones that are semi-holonomic. Compare this with Theorem 5 and 6 of [Virsik, 71]Proposition 3. If � is an r-th order total connection then ��� is semi-holonomici� � = �Ms for s = 2; : : :r � 1 and � = h � (��)r�1, where h = J(�r�10 ) � �.Proof. By (34) � � � is semi-holonomic i�(37) (� � �)(p) = J(J(�s�1p�2) � �rs � (� � �) :M ! Q1(e�p�1) for 1 < p � s � rBy Lemma 2 the left hand side is �(p) and the right hand side givesJ(J(�s�1p�2) � �rs) � (� � �) = J(J(�s�1p�2) � �r�1s ) � J(�rr�1) � (� � �)= J(J(�s�1p�2) � �r�1s ) � �for 1 < p � s � r � 1, andJ2(�r�1p�2) � (� � �) = J(J(�s�1p�2) � �r�1s ) � J(�rr�1) � (� � �) = J(J(�s�1p�2) � �r�1s ) � �for 1 < p � r. Thus � � � is semi-holonomic i� �(p) = J(J(�s�1p�2) � �r�1s ) � � for1 < p � s � r�1 and �(p) = J2(�r�1p�2)� (�� �) : M ! Q1(e�p�1). This means that� � � is semi-holonomic i� � is semi-holonomic and(38) �(p) = J2(�r�1p�2) � (� � �) :M ! Q1(e�p�1) for 1 < p � r :On the other hand, (26) and Lemma 1 allow us to give J2(�r�1p�2) � (� � �)(x) theformJ(J((�r�1p�2) � [�])(�(x); �(x)) = J([J(�r�1p�2) � �] � (�r�1p�2 � id�(M)))(�(x); �(x)) =J([�(p�1)] � (J(�r�1r�2) � id�(M))(�(x); �(x)) = J([�(p�1)])(J(�r�1p�2) � �)(x); �(x)) =J([�(p�1)])(�(p�1))(x); �(x)) = (�(p�1) � �)(x) :Thus (38) is equivalent to �(p) = �(p�1) � � for 1 < p � r.To summarize: ��� is semi-holonomic i� � is semi-holonomic and � = �(p�1)��for all p = 2; : : :r. We conclude by induction that � � � is semi-holonomic i�� = h � � � � � � � � where h = �(1) as required. �Recall that if an r-th order total connection � is holonomic then the reduction[�] satis�es [�] : �r�1 � �(M ) ! (�r�1)1. We have just seen that any totalconnection has a semi-holonomic total reduction. Similarly, we shall say that �has a holonomic total reduction if f�g : �� �! �r � ��r. Kolá© proved



TOTAL CONNECTIONS IN LIE GROUPOIDS 195Proposition 4. If h is a connection in � and � a linear connection on M thenh � � has a holonomic total reduction, explicitlyfh � �g : �� �(M )! �1 � �(M )! �2 � e�2(Z;X) 7! ([h](Z;X); X) 7! [h � �]([h](Z;X); X) 2 �2 ;(39)if and only if h is curvature-free and � is torsion-free.See Proposition 5 and 6 in [Kolá© 75], where h � � is denoted by p(h; �), and iscalled torsion-free if (39) holds.Lemma 3. � � � : M ! Q1(e�r) is curvature-free if and only if both � : M !Q1(e�r�1) and � :M ! Q1�(M ) are curvature-free.Proof. We shall use the obvious fact that if C is a �rst order connection in �and ' : � ! 	 is a smooth functor then also the transported connection 'hCiis curvature free. Assuming � � � : M ! Q1(e�r) is curvature-free we get then byLemma 2 that both � and � are curvature free. Conversely, assuming both � and� curvature free we conclude easily that also � � � is curvature-free, so it su�cesto apply (25). �The same will hold ifQ1(e�r) andQ1(e�r�1) are replaced by their semi-holonomicand holonomic counterparts.The following result is easily established from coordinate expressions of theprolongations in question.Lemma 4. If Y !M is a �bred manifold and r > 2 is an integer, thenJr(Y ) = �Jr(Y ) \ J1(Jr�1(Y )) \ J2(Jr�2(Y )) :Proposition 5. If r > 2 then the simple total connection h���� � ��� = h�(��)r�1has a holonomic total reduction if and only if h is curvature free and � is bothcurvature and torsion free.Note that in the case of r = 2 we do not need � to be curvature free onlytorsion-free: this is the quoted result from [Kolá© 75].Proof of Proposition 5: Let � = h � (��)r�1 have a holonomic total reduction. By(31) the same is true about f�(3)g = f(h � �) � �g and so by Proposition 4 appliedto �1 the connection h � � is curvature-free and � is torsion-free. Apply Lemma 3to h � � to conclude that h as well as � are also curvature-free.Conversely, let h be curvature-free and � both curvature- and torsion-free,and let �rst r = 3. We get from (26) and (30) | written as f�(s)g = [�(s)] �(f�(s�1)g; pr2) : �� �(M )! ��s and applied to �(s) = h � � |(h � � � �)(x) = Q1([h � �]) � ((h � �)� �)(x) =Q1([h � �]) � (Q1([h])� pr2)(h(x); �(x)) =Q1(fh � �g(h(x); �(x)) 2 Q1(�2)



196 GEORGE VIRSIKsince by Proposition 4 fh � �g(Z;X) 2 �2. Hence the reduction [h � � � �] maps�2 � �(M ) into (�2)1 and so fh � � � �g(Z;X) = [h � � � �](fh � �g(Z;X); X) 2(�2)1 for any Z 2 � and X 2 �(M ). On the other hand, applying Proposition4 to the groupoid �1 we get [(h � �) � �] : �1 � � ! (�1)2 and so this timefh����g(Z;X) = [(h��)��]([h](Z;X); X) 2 (�1)2 for any Z 2 � and X 2 �(M ).Since fh � � � �g(Z;X) 2 ��3 by Proposition 2, it su�ces to apply Lemma 4 toconclude that fh � � � �g : �� �(M )! �3.Assume now that fh � (��)r�2g : � � �(M ) ! �r�1, where r � 4. Writingh� = h � (��)r�3 we get similarly as before(h� � � � �)(x) = Q1([h� � �]) � ((h� � �) � �)(x) =Q1([h� � �]) � (Q1([h�])� pr2)(h�(x); �(x)) = Q1(fh� � �g(h�(x); �(x)) 2 Q1(�r�1)since by the induction assumption fh� � �g(Z;X) 2 �r�1. Hence the reduction[h� � � � �] maps �r�1 � �(M ) into (�r�1)1 and so fh � � � �g(Z;X) = [h � � ��](fh � �g(Z;X); X) 2 (�r�1)1 for any Z 2 � and X 2 �(M ). On the other hand,applying Proposition 4 to the groupoid �r�2 we get [(h� � �) � �] : �r�2 � � !(�r�2)2 for any Z 2 � andX 2 �(M ). Since fh�����g(Z;X) 2 ��r by Proposition2, it su�ces to apply Lemma 4 to conclude that fh� � � � �g = fh � (��)r�1g :�� �(M )! �r. �Using f�g of (20) or (21) to transport connections, we get immediatelyProposition 6. If h is a �rst order connection in �, and �1; : : : �r linear connec-tions on M then any r-th order total connection � in � will give rise to their lift,ie. an (r+1)-st order total connection f�ghh� �1� � � �� �ri in �. In particular, if�1 = � � � = �r = �, we get the total connection f�ghh� �i, using (21), rather than(20), for the lifting.Since f�g of (20) is a right inverse of the canonical projection ������r : e�r !�� �(M )� � � � � �(M ) we conclude that | c.f. (14) |(40) (�r0 � f�g)hh� �i = h and (J(b) � �r!i0 � f�g)hh� �i = � for i = 1; : : :r :Proposition 2 yields immediatelyProposition 7. The lifted (r + 1)-st order total connection f�ghhi is alwayssemi-holonomic. It is even holonomic if � has a holonomic total reduction.From Proposition 3 we conclude that if � � � = f�ghh� �i then � is necessarilysimple, ie. � = h � (��)r�1. Conversely, if � = h � (��)r�1 then � � � = h � (��)rand the recurrence relationsh � (��)s = [h � (��)s�1]hh � (��)s�1 � �i; s = 1; : : : r ;together with (30) show easily that also f�ghh� �i equals h � (��)r. Thus we have



TOTAL CONNECTIONS IN LIE GROUPOIDS 197Proposition 8. If � is an r-th order total connection in �, � a linear connectionon M then the two (r+1)-st order total connections �� � and f�ghh� �i coincidei� � = h � (��)r�1, where h = J(�r�10 ) � �.Proposition 9. The simple connection � = h � (��)2 is holonomic provided h iscurvature-free and � is torsion-free. For r > 3, the simple connection � = h�(��)r�1is holonomic provided h is curvature-free and � is curvature-free as well as torsion-free.Proof. This follows immediately from Propositions 4 and 5. �� � �Let us now consider the special case of total connections on M , ie. when � =�(M ) or � is the trivial groupoid �0(M ) = M � M . The r-th prolongation of�(M ) will be denoted by g(�)r and similarly in the semi-holonomic and holonomiccases. Note that g(�)r = e�r+1(M ), whereas �r+1(M ) and �r+1(M ) are in generalproper subgroupoids of (�)r and (�)r respectively. On the other hand, the r-th (semi-holonomic or holonomic) prolongation of �0(M ) is e�r(M ) (�r(M ) or�r(M )). Thus an (r + 1)-st order total connection in �0(M ) is the same as anr-th order total connection in �(M ). In particular, it will give rise to a totalreduction �(M ) � �(M ) ! g(�)r or to a total reduction �(M ) ! e�r+1(M )depending on whether one takes for � the groupoid �(M ) or �0(M ). On theother hand, an r-th order semi-holonomic or holonomic total connection in �(M )is not necessarily (reducible to) an (r + 1)-st order semi-holonomic or holonomictotal connection in �0(M ). We shall say that an r-th order total connection onM , ie. in �(M ), is strongly semi-holonomic or strongly holonomic if it is a semi-holonomic or holonomic respectively (r + 1)-st order total connection in �0(M ).An r-th order total connection � on M gives rise to a reduction [�] : e�r(M )��(M )! e�r+1(M ) (c.f. (16)). If � is semi-holonomic then [�] maps (�)r�1��(M )into ((�)r�1)1 and if it is strongly semi-holonomic then it maps �r(M ) � �(M )into �r(M )1 � ((�)r�1)1. By Proposition 2 the total reduction f�g always maps�(M )��(M ) into (�)r and by the same result the total reduction of �, seen as an(r + 1)-st order total connection in �0(M ), is a functor �(M ) ! �r+1(M ). Thisgeneralises Proposition 9 of [Kolá© 74], which assumes that � is semi-holonomic.In fact, it is not hard to see that our f�g : �(M )! �r+1(M ) corresponds to f(�)of [Kolá© 74].The concept of a simple r-th order total connection depends again on whetherwe take for � the groupoid �(M ) or �0(M ): a decomposable r-th order totalconnection in �(M ) is of the form �0 � �1 � � � � � �r�1, where �0; �1; : : : �r�1 arelinear connections on M , �0 corresponding to the connection h in � which is now�(M ). It is simple if �1 = �2 = � � � = �r�1. The same connection �0 � �1 � � � � � �r�1can also be seen as a decomposable (r + 1)-st order total connection in �0(M ),



198 GEORGE VIRSIKwhere the role of the connection h in �0(M ) is played by the trivial connection. Ifit is simple, ie. �0 = �1 = � � � = �r�1, we shall say that �0 � �1 � � � �� �r�1 is stronglysimple. Proposition 3 applied to these two cases says then that if � is an r-th ordertotal connection in �(M ) then � � � is semi-holonomic i� � is simple and � � � isstrongly semi-holonomic i� � is strongly simple. Compare this with Proposition 7of [Kolá© 74] which says that � �� � � ��� = � � (��)r�1 is not only a semi-holonomicr-th order total connection in �(M ) but also a semi-holonomic (r + 1)-st ordertotal connection in �0(M ), ie. that � � � � � � �� � is strongly semi-holonomic for anylinear connection � on M .Applying Lemma3, Propositions 4, 5 and 9 to � = �(M ) we obtain immediatelyProposition 10. The simple connection �0 � � has a holonomic total reductionf�0 � �g : �(M ) � �(M ) ! (�)2 i� �0 is curvature-free and � is torsion-free;for r > 2 the simple connection �0 � (��)r�1 has a holonomic total reductionf�0 � (��)r�1g : �(M ) � �(M ) ! (�)r i� �0 is curvature-free and � is torsion-free as well as curvature-free. For any r > 1 the r-th order simple connection�0 � (��)r�1 is curvature-free if and only if both �0 and � are curvature-free. If �0 iscurvature-free and � is torsion-free then �0 � � � � is a holonomic total connectionand if � is also curvature-free then �0 � (��)r�1 is a holonomic r-th order totalconnection for any r > 2.Applying the same results to � = �0(M ) we obtain similarly:Proposition 11. The connection � on M has a holonomic total reduction f�g :�(M ) ! �2(M ) i� � is torsion-free, and for r > 1 the r-th order strongly simpletotal connection (��)r in �(M ) has a holonomic total reduction �(M )! �r(M )i� � is torsion-free as well as curvature-free. If � is torsion-free then ��� is a stronglyholonomic 2-nd order total connection in �(M ) and if � is also curvature-free then(��)r is a strongly holonomic r-th order total connection in �(M ) for any r > 1.Remark. Yuen introduced the concept of torsion for connections in higher ordersemi-holonomic frame bundles, and Kolá© generalised this to connections in the�rst prolongation of any principal bundle (c.f. [Yuen 71] and [Kolá© 75]). In thelanguage of Lie groupoids one can speak of the torsion of a semi-holonomic totalconnection in �(M ) of arbitrary order r > 1, and of the torsion of a secondorder total connection in � where � is any Lie groupoid. For a total connection� being torsion free in this sense seems to be closely related to the holonomityof its total reduction f�g. More exactly, Kolá© has recently proved what in ourterminology amounts to the result that an r-th order holonomic total connection in�(M ) is torsion-free in the sense of [Yuen 71] i� it has a holonomic total reduction�(M )! �r(M ) � �r(M ), ie. when � is seen as an (r+1)-st order total connectionin �0(M ) (c.f. [Kolá© , to appear]). On the other hand, Proposition 5 of [Kolá© 75]can be interpreted as saying that a second order total connection in � is torsion-free i� its total reduction �� �(M )! �2 is holonomic.There is a one-to-one correspondence between r-th order connections (in thesense of [Ehresmann 56]) in �(M ) and r-th order total connections in �(M ), ie.



TOTAL CONNECTIONS IN LIE GROUPOIDS 199an FM(M )-equivalence(41) e%r : eQr(�(M ))! Q1(e�r(M ))(c.f [Kolá© 74]). Let us summarize here some properties of e%r derived in [Kolá©74]. For any Lie groupoid � one constructs FM(M )-morphisms�r+1 � ��r�1 : eQr+1(�) �Q1(e�r(M ))! Q1(e�r) and(42) kr � k�r : Q1(e�r) � eQr(�)! eQr+1(�)(43)(for r = 1, see the proof of Proposition 1). If � = �(M ) one de�nes e%r of (41)recurrently by e%1 = id and e%r(X) = �r(X; e%r�1(�rr�1X)), where �r = ��(M)r . Itis shown that this indeed de�nes an FM(M )-equivalence whose inverse is givenagain recurrently by e%�11 = id and e%�1r (Z) = kr�1(Z; e%�1r�1)(J(�rr�1); Z), wherekr�1 = k�r�1. Actually, e%�1r is nothing but the map �r�1 : Q1(e�r�1) ! eQr(�)referred to earlier, applied to � = �(M ). Moreover, e%r maps Qr(�(M )) ontoQ1(�r(M )). Proposition 4 of [Kolá© 74] can be stated as:Proposition 12. If C is an r-th order connection in �, C0 a �rst order connectionin � and L a �rst order connection in e�r(M ) then(44) �r+1(C �C0; L) = [C]hC0� Liwhere �r+1 � ��r+1.Applying this to e�r�1 instead of � and restricting ourselves to �rst order con-nections, the connection [C]hC0 � Li with C = C0 = � and L = � can be writtenas � � � and we get immediatelyProposition 13. If � is an r-th order total connection in �, and � a linearconnection on M then(45) �2(� � �; �) = � � �where �2 is taken with respect to the groupoid e�r�1, ie. �2 : eQ2(e�r�1)�Q1(�(M ))! Q1(e�r).Proposition 8 of [Kolá© 74] can be stated as follows.Proposition 14. If h is a �rst order connection in �, and � a linear connectionon M then(46) �r+1� h � � � � � h| {z }(r+1)�times; %r� � � � � � � �| {z }r�times �� = h � � � � � � � �| {z }r�times :In particular, for � = �(M ) and h = �,



200 GEORGE VIRSIK(47) e%r� � � � � � � �| {z }(r+1)�times � = � � � � � � �| {z }(r+1)�times :Thus the equivalence (41) maps \ �-powers of �" onto \�-powers of �" for anylinear connection � on M .Remark. It seems that formula (47) cannot be extended to di�erent linear con-nections on M . In fact, even for two linear connections �0 and �1 on M we gete%2(�0 � �1) = �2(�0 � �1; �0) since �21(�0 � �1) = �0 and %1 = id. By Proposition 12this yields e%2(�0 � �1) = [�0]h�1 � �0i 6= [�0]h�0 � �1i = �0 � �1.AcknowledgementThe author wishes to thank Ivan Kolá© of Masaryk University, Brno, Czech Re-public, for valuable discussions and suggestions, notably Proposition 1, during hisstay at Monash University. References[1] Ehresmann, C., Extension du calcul des jets aux jets non holonomes, C.R.A.S. Paris 239(1954), 1762{1764.[2] Ehresmann, C., Sur les connexions d'ordre sup�erieur, Atti V� Cong. Un. Mat. Italiana,Pavia - Torino, 1956, 326{328.[3] Kolá©, I., Some higher order operations with connections, Czechoslovak Math. J. 24 (99)(1974), 311{330.[4] Kolá©, I., A generalization of the torsion form, as. pst. mat. 100 (1975), 284{290.[5] Kolá©, I., Torsion-free connections on higher order frame bundles, (to appear).[6] Kolá©, I., Michor, P. W., Slovák, J., Natural Operations in Di�erential Geometry,Springer-Verlag, 1993.[7] Kolá©, I., Virsik, G., Connections in �rst principal prolongations, (to appear).[8] Que, N., Du prolongement des espaces �br�es et des structures in�nit�esimales, Ann. Inst.Fourier, 17, (1967), 157{223.[9] Virsik, J. (George), A generalized point of view to higher order connections on �brebundles, Czechoslovak Math. J. 19 (94) (1969), 110{142.[10] Virsik, J. (George), On the holonomity of higher order connections, Cahiers Top. G�eom.Di�. 12 (1971), 197{212.[11] Yuen P. C., Higher order frames and linear connections, Cahiers Top. G�eom. Di�. 12(1971), 333{337.George VirsikDepartment of MathematicsMonash UniversityClayton, Victoria 3168AUSTRALIA
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