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TOTAL CONNECTIONS IN LIE GROUPOIDS

(GEORGE VIRSIK

ABSTRACT. A total connection of order r in a Lie groupoid ® over M is defined as
a first order connections in the (r — 1)-st jet prolongations of ®. A connection in the
groupoid ® together with a linear connection on its base, ie. in the groupoid II(M),
give rise to a total connection of order r, which is called simple. It is shown that
this simple connection is curvature-free iff the generating connections are. Also, an
r-th order total connection in ® defines a total reduction of the r-th prolongation
of @ to ® x II(M). It is shown that when r > 2 then this total reduction of a simple
connection is holonomic iff the generating connections are curvature free and the
one on M also torsion-free.

The concept of higher order connections in differential geometry was introduced
by Ehresmann who used Lie groupoids rather than principal bundles to study
geometric structures (c.f. [Ehresmann 56]). It is a well known fact that the category
of Lie groupoids and that of principal bundles are equivalent in the sense that any
concept or result obtained in the “language” of one of them is readily translated
into the “language” of the order. Roughly speaking, if P is a principal bundle, we
can associate with it the Lie groupoid PP~ and conversely, if ® is a Lie groupoid
and a the source map, then &, = {6 € ® : af = «} for any element « of the base,
is a principal bundle. Many results on higher order connections and associated
geometric objects have been obtained since the pioneering work by Ehresmann,
some using Lie groupoids, some using principal bundles and their prolongations as
the basic geometric structure on which to study higher order connections. Recent
applications in gauge theory, including the higher order case, have also contributed
to a renewed interest in these studies.

The present paper uses the Lie groupoid approach to r-th order total connec-
tions defined as first order connections in the (r — 1)-st prolongation of the given
Lie groupoid. Though it is true that an r-th order total connection induces an
r-th order connection in the sense of Ehresmann but in general not vice-versa,
it turns out that some results about total connections can be obtained parallelly
with those known for higher order connections in the sense of Ehresmann (c.f.
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Proposition 3 below). KoldS was the first to study explicitly the relation between
these two approaches to higher order connections, and [KoldS 74], written in the
Lie groupoid language, was also the starting point for the present paper. The ba-
sic method used is that of “transporting connections along functors” including
those which arise from a connection as reductions of some prolongations of Lie
groupoids. These reductions associated with higher order connections were first
introduced and studied in [Que 67]. We generalise some results from [KolaS 74,
75], notably about problems concerning integrability of higher order connections
obtained from a first order connection in the groupoid together with a linear con-
nection on its base. These results are applied to the special case of the Lie groupoid
associated with the frame bundle of a given manifold, and compared with those
already obtained, for instance in [KolaS, to appear].

Manifolds and maps shall always be smooth — ie. C° — and finite dimen-
sional. Following [KoldS-Michor-Slovak] M f denotes the category of such man-
ifolds, M f,, the subcategory of M f consisting of m-dimensional manifolds and
local diffeomorphisms between them. FM will be the category of fibred mani-
folds p : E — M (ie. surjections of maximal rank) and fibre preserving maps,
and FM(M) C FM for a fixed manifold M will denote the subcategory of fibred
manifolds over a fixed base M with morphisms as maps which induce the identity
on the base. As usual, the fibre p~!(z) C E will also be denoted by E,. If C is
any of these categories, we shall use the term “C-morphism” or “C-equivalence”
when referring to C. We shall work mainly with the category of Lie groupoids over
a fixed base M and smooth functors over the identity on M (c.f. [Que 67]).

Let F and G be two functors FM(M) — FM(M). For a given object p :
E = M of FM(M) we shall denote by F(F) - M and G(E) = M its images
under F and G respectively. F is said to be a subfunctor of G, written F C G,
if for each p : E — M the fibred manifold F(E) — M is a fibred submanifold
of G(E) = M [ie. F(E) C G(FE) is a submanifold and the projection F(F) is
the restriction of G(F) — M], and for each morphism h : F — E’ the morphism
F(h) : F(E) — F(F’) is the restriction of G() : G(F) = G(E’). In other words,
F is a subfunctor of G, if there is a natural transformation from F to G which is
a regular embedding for each object of FM(M). Also, if F is a subfunctor of G,
F’ a subfunctor of G’ then a natural transformation IT : F — G is said to preserve
these subfunctors if it is at the same time a natural transformation IT : F/ — G'.

For two manifolds M and N, denote as usual by J" (M, N) the manifold of all
holonomic r-jets (r > 1) from M to N, and write J(M, N) instead of J'(M, N).
Denote also by a : J"(M,N) — M and 3: J (M, N) = N the source and target
maps respectively, by J2 (M, N) C J" (M, N) the submanifold of jets with source
z, and by J. (M, N), C J" (M, N) the submanifold of jets with source z and target
y. Similarly for the manifolds j’“(M, N) and J"(M, N of non-holonomic and semi-
holonomic jets respectively (c.f. [Ehresmann 54]). We shall use the symbol o to
denote composition of jets, ie. if Z = jif € J"(M,N) and YV = jrg € J'(N, P),
y= f(z),then YoZ = ji(gof) € J (M, P) with an appropriate extension to non-
holonomic and semi-holonomic jets. Also, j(t — f(t)) will sometimes stand for
Jrf, and we shall use the abbreviated notation j7, = j7(¢t — t) and jL[c] = ji(t — ¢)
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for the jets of the identity map and the constant map respectively. Recall that in
[Kol4S, Michor, Slovak] J” is regarded as a functor from the product category
Mfp, x Mf into FM. We shall define the functor J” : Mf,, x Mf — FM
recurrently as J1 = J = J! and J"(M,N) = JYM,J"=H(M,N)), I"(f,g9) =
JYS,IH(f,g)) for r > 1 and call elements of J"(M, N) iterated jets (of order
7). Of special interest is the case when N = F is the total space of a fibred
manifold p : £ — M. In this case we shall write J(F) = J(M, E) and regard
it as the fibred manifold J(M, F) — M where the projection is the source map
a: JYM,E) — M. In this sense J can be seen as an endofunctor on FM (M) and
similarly J7 : FM(M) - FM(M) if it is defined as J"(E) = J'(M,E) — M.
Moreover, in the context of fibred manifolds, J* : FM (M) — FM(M) can be
seen as an iteration of J, explicitly J¥ = J o J"~! for r > 1.

Thus for a fixed manifold M we have a functor J : FM(M) — FM(M)
which assigns to the fibred manifold p : £ — M the fibred manifold o : J(F) =
J(M,FE) = M,andto h: E — E' the mapJ(h) = J(M,h) : J(M,E) = J(M, E")
given by the composition of one-jets J(M,h)7Z = jézh o 7. Denoting by I the
identity functor on FM (M), by O the zero functor on FM (M) [which assigns to
p: E — M the “collapsed” fibred manifold id : M — M], we can regard p, a and
£ as natural transformationsp: I —- 0O, g:J—>Tlanda=pof:J— O.

We have also J”, the r-th iteration of J, and we shall write also J° = I and
J=! = O. For each r > 0 the target map (3 defines a natural transformation
77 I — J7~1 and by iteration 77 : J7 — J*, for any 0 < s < r with 77 = id.
This can be further extended to @} : J” — J*, for any —1 < s < r by defining
71 :J = 0 as a” = pomp. It is not hard to verify that

r

(1) T, =ml o, for —1<s<g<r.

Observe that J7 o J* = J* o J” = J"+* only for 0 < s < r, whereas J=1 0 J* =
J-' =0 and J7 0o J~! = O" is the constant functor which assigns to £ — M the
fibred manifold J"(M) — M and to any morphism of FM(M) the identity on
J' (M) — M. Elements of J"(E) will be called iterated jets of E — M.

The fact that 7} is a natural transformation is expressed by the formula
(2) Y (h) =J°(h)n for —1<s<r, and any morphism h € FM(M).

5

Substituting here h = af, 0 < | < k for a fixed fibred manifold £ — M, and
observing that now J"(h) : J***(E) — J™(E) for 0 < r, similarly J*(h), we
obtain

(3) ﬂgj_'f.]r(ﬂf):.]s(ﬂf)ﬂgiz for 0<s<r and 0<I<k.

In case of h = 7% | (E) : 7%, = of : J¥(E) = J-YE), k > 0, we have J"(aF) :
JtR(E) — O"(E) and similarly J*(a®) : J***(E) — O*(E) unless s = —1 in
which case J*(a*) = O(E) — O(E). This leads to

(4) ﬂng(ak) = Js(ak)ﬂ'gig for 0<s<r and 0<k,

(5) "I (F) = otk for 0<r, and 0<k
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Similarly, taking s = —1 and 0 <! < k in (3), one obtains

(6) oI (nf) = otk for 0<r,and 0<{<k.

For a fibred manifold p : E — M denote by J1F C J(F) the space of one-jets
of local sections of p : E — M, ie. of one-jets jls where ps(u) = u for u in a
neighbourhood of z. Thus Z € J(E), = J.(M, E) belongs to J1 E iff J(p)Z = ji.
Hence Jp is a subfunctor of J and 7 € J"(E), belongs to jr(E) ift I7(p) 2 = j5. Tts
iteration gives the subfunctor jr of J”, explicitly jr =Jio J~r_1 and the elements
of jr(E) are called non-holonomic r-jets of local sections of E — M ; we let again
Jo stand for the identity functor.

For each fibred manifold £ — M and each r > 0 consider the subset S"(F) =
{Z € J(E) : 70(2Z) = I*(T25)(Z) whenever 0 < k < s < r}. We obtain

5

again subfunctors 8" C J” preserved by 77 : 8" — S*. The elements of J,.(E) =

Jr(E)NS"(E) are the semi-holonomic r-jets of local sections of £ — M. Explicitly,
7Z € J.(E)iff Z €> J.(F) and either

Z = jls for some local section s of Jr_1(E)y = M
(7) and 1t satisfies Jl(ﬂ'::%)Z =n._7

or
(8) m(Z) = I (7128 (Z)  whenever 0 <k < s <r

or
(9) (Z) = J(7F 1w (Z) whenever 1 <s < k<7

Finally, J,(F) C J,(F) is the subbundle of holonomic r-jets j7s of local sections
s of B — M. Thus for each r > 0 we have a sequence of subfunctors J, C J. C
jr C J” which are preserved by the natural transformations «% : J° — J°. In
what follows, higher order jets, prolongations, connections etc. are understood to
be non-holonomic unless otherwise stated.

Let @ be a fixed Lie groupoid over M, a, b : ® — M the source and target
surjections, ~: M — & the injection of units. Given an integer r > 0 let i
{Z € j’“(M, ®):J(a)7 = jg(z), ()7 € ﬁT(M)} be the r-th prolongation of
®, and let ﬁ’“(M) denote the groupoid of invertible r-jets from M to M, which is
the r-th prolongation of the trivial groupoid M x M. We can associate with ® the
diagram of functors
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o O g (B)
A1
I 11"~ 4(B) .
//l [ENEAN
~2 . 11""%(B)

///l l\\\

AAA7TTTTINRNN
///A/w w\nmmm

o' ——TI(B)
[ identical arrows] l l [ identical arrows]

The vertical arrows in (10) stand for direct projections 7f_; and the slant ones
for their “lifts” J(m2_,). In general, there are (:) functors ®" — ®* (all suitable
combinations of direct and lifted projections). However, because of (3), especially
75 0 J(mf21) = 7m_,, we need to consider in (10) as projections = P°,
0 < s < r only “paths” consisting of a sequence of vertical arrows followed by a
sequence of slant arrows. For a fixed pairs s < r there are r — s + 1 of such paths,
and they are

(11) wg—”:J(nij)ow{:@e&?s, i=s, s+1,...,7
or

(12) 2t =3(r Y on! :ﬁT(M) — ﬁs(M), i=s, s+1,...,7
Observe that these are exactly the functors listed in (9), ie. an element of " (or
ﬁ’“(M)) is semiholonomic exactly when all these » — s + 1 functors " — II* (or
ﬁ’“(M) — ﬁs(M)) coincide for any s < r.

In particular, we obtain r-projections 777~ : ﬁ’“(M) = TII(M),i=1,...
hence also

r

bl bl

(13) I = (a7, w22 a7 I (M) — (M) % - % (M) gimes] -
Composing idg xII" with (7§, J"(b)) : P — D x ﬁ’“(M) — and observing that
w0 J"(b) = J(b) oy for i = 1,..., 7 — we obtain the natural functor

(14)
BIT" = (idg xI1") o (x5, 37 (b)) =

(5, I(b) o ;=L L I(B) o T 1 B = & X TI(M) % - -+ X TH(M)[r times] -
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Let Q%(®) = {Z € JF(M,®) : I*(a)Z = jE[w), 3(0)Z € j%, 787 =~ (),
(a(Z) = x)}. Then o : @k(@) — M is a fibred manifold and its sections are called
k-th order connections in ® (c.f. [Ehresmann 56]). Recall that Q* can be extended
to a functor @k from the category of Lie groupoids over M to FM(M) and that
®* acts on @k(@) via

ZeQf e )=
(15) (E,0) = Zal=(E-C-fong(E" 1] o {IF ()=},

where - denotes the prolongation of composition in ® to J*(M, @’")

A k-th order connection in ®", (k> 0andr>0),ie. asectionT : M — ka(%’“)
will be called an (r, k)-connection in ®. It defines a reduction of %’“"’k, le. an injec-
tive functor [[] : ®" x II¥ (M) — ®"* which is a right inverse of the corresponding
canonical projections via (10). The functor [I']: ®" x IT¥ (M) — ®"T* is constructed
as follows (c.f. [Que 67]). Tt is uniquely determined by the requirement that it be
a groupoid isomorphism of P x ﬁk(M) onto the subgroupoid &p = {= € Prk .
Zal(x) = I'(y) where # = o= = al'(z) and y = bo 73,7"Z = al'(y)}. Here a
denotes the action of &+ = (&V)k on @k(&f“) defined by (15), ie.

(15a) EeQ e Qb)) =
(E,0) = Zal=(E- -l E]) o {TFbomp)E}T,

where - again denotes the prolongation of composition in ® to J*(M, &V) and
borwl : ® — M is the target surjection in the groupoid ®" (c.f [Virsik 69]).
It is a matter of straightforward verification to see that the required groupoid
isomorphism ®" x ﬁk(M) — ®r C " is given by

(16) [[]: " x II*(M) — & +*
(2,X) = (D(y) 0 X) - o 2] - T(a) ™"

where - denotes again the prolongation of composition in " and z = aX = o’ 7,
y=miX =boriZ.

A connection I' : M — @k (&V) can be a holonomic or semi-holonomic k-th order
connection in the r-th holonomic or semi-holonomic prolongation of ®, altogether
nine possibilities. For instance, if I' is a holonomic k-th order connection in the
r-th order semi-holonomic prolongation of ®, ie. if I' : M — Q*(®") then also
[[]:®" x I*(M) — (®")*. In this case we shall say that I' is a connection of type
(rS,kH), or briefly, an (rS, kH )-connection.

If ¥ is another Lie groupoid over M and ¢ : ® — ¥ a smooth functor over the
identity on M, then ¢ will assign to each (7, k)-connection in ® an (r, k)-connection
in ¥ of the same type, explicitly, (T') : z + J"+*(©)T(z). The diagram (10) of
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functors can thus generate all sorts of connections of order k from a given (r, k)-
connection. On the other hand, a given (r, k)-connection T itself can serve as a
generator of (s,{)-connections in ®"** from those in ®" x I1¥ (M) via the reduction
[[]: ®" x TIF(M) — &7 +F,

Most important are the cases when either » = 0 or £ = 1. We shall refer to (0, k)-
connections in @ as k-th order connections in ® (if k& > 1), to distinguish them
from total connections in ®: An r-th order total connection in ® is a connection
of type (r—1,1) in ®. The diagram (10) shows that an r-th order total connection
in @ gives rise to a number of s-th order total connections in ® (where s < r) via
the functors 71';:%_", i=s—1,...,r—1asin (11), altogether » — s + 1 of them.
It will also give rise to the same number of s-th order total connections in M x M
via the functor J" () followed by 77~ 1_” yi=s—1,...,r—1 asin (12). Of course,
an s-th order total connection in M >< M is the same as an (s — 1)-st order total
connection in TI(M) or on M; in particular, a second order total connection in
M x M is the usual linear connection on M.

More important is the r-th order connection in @ generated by an r-th order
total connection via the map o,_1 : Ql(&ﬂ”_l) — @’“(q)), defined in [KolaS 74],
which takes @Q'(®"~!) into Q" (®). This indicates that a total connection of order
7 is “more” than a connection (in the sense of [Ehresmann 56]) of the same order.
The same is suggested by

Proposition 1 (c.f. also [KolaS, Virsik]). There exists a canonical FM(M)-
equivalence

(17) K QY@ — Q*®) x QY (II(M)) .

) = (k1(Z,3(7})Z),3%(b) Z), where for Z = jL{ we put (c.f.
Lt (C(t) - T) o J(B)C(8) ™). Tts inverse is k2 : Q*(P) x
) also defined in [Kol4S 74] by /fz(X Y) =Lt — v(t) o A(t) -
v™1(z)), where X = jlv € Q*(®), and Y = jIA € Q*(II(M)),.
Observe that J(r o)k 2(X, V) = Jo(t = mg(u(t) o A(t ) mv=H(2) = gt =
w5 (v(t) 0 A1) - jp[mgv™H ()] = I(mg) (X) - mf X~ = T (mp)(X), fe.
(18) J(mH)ra(X,Y) = 7t X

since X is semi-holonomic. Also, J(b)r2(X,Y) = jl(t = J(b)v(t) o A(t)) = jL(t —
A(t)). Since v(t) € Q' (®) we have J(b)v(t) = ji, and so we can conclude that

(19) J2(b)kr2(X,Y) =Y.

Proof. Define K(Z
[KolaS 74]) ki (Z,T) =
(I)l

j
Q'(II(M)) — Q*(2?) als

To show that K and k2 are indeed mutually inverse first use (18) and the
formula (17) of [KolaS 74] to obtain

K(k2(X,Y)) = (k1 (52(X,Y), J(m5)k2(X, Y)), T2 (b)ka( X, Y))
= (kl ("{2(}(’ Y)’ F%X)’ ,]2([))/{2()(’ Y))
= (X, J*(b)k2(X,Y)) = (X,Y)
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by (19). As for the converse, use formula (16) of [KolaS 74] to obtain

ko(K(Z)) = kolk1(Z,3(7)2), 32 () Z) = 7 . O

Thus a second order total connection uniquely determines and is uniquely deter-
mined by a second order semi-holonomic connection together with a linear connec-
tion on M. More generally, an r-th order total connection in @ uniquely determines
and 1s uniquely determined by a second order semi-holonomic connection in Pr—2
(ie. a (25, r — 2)-connection in ®) together with a linear connection on M.

An r-th order connection €' in ® defines a reduction [C] : ® x II" (M) — &",
a right inverse of the canonical projections T = P x ﬁ’“(M) defined by (10).
On the other hand, an r-th order total connection T' defines a reduction [I7] :
=1 x (M) — ®". This T actually gives rise to a whole sequence of reductions
[F(xs_ ) o] : @1 x II(M) — ®° for s =1,2,...,r, hence to a reduction

(20) (T} :® x (M) x - x IH(M)[y times] — @

which is a right inverse of the natural projection (14). We have then the total
reduction

(21) (I} : ®xI(M) = &,
(Z,X) = {T}Z,X,...,X).

Note that we denote both (20) and (21) by the same symbol, ie. write simply
{T'}HZ, X) instead of {T}(Z, X,..., X).

Two connections in ®, C' of order r and C7 of order s, can be composed to
obtain their product C'x C7 which is again a connection in @ of order r + s. This
composition is associative (c.f. [KoldS 74]). Of special interest is the case C x h,
where h is a first order connection in ®. In this case we can write explicitly

(22) (O xh)(e) = ji(um Cu)- Llho(w)]) with h(z) = jhho ho(u) € @,

where the dot - denotes the jet prolongation of the groupoid multiplication in &
(c.f. [Virsik 71]). If h = 7} o C then ¢’ = C * h is called the prolongation of C'
(c.f. [Ehresmann 56]). An r-th order connection C' is said to be decomposable if
C = hy *---% h,., where hy,... h, are all first order connections in ®. If this
happens then necessarily

(23) hi=m o C =3I, Y onloC: M — QH®).

A decomposable connection C' is called simple if Ay = --- = h,. If C' is any r-th
order connection which is semi-holonomic then all the connections (21) coincide;
in particular a decomposable connection is semi-holonomic iff it is simple. Also, if
C' x h is semi-holonomic then necessarily C'« h = C* and C' (as well C”) is simple,
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ie. of the form h*---xh and it is holonomic iff h is curvature-free (c.f. [Ehresmann
56] and [Virsik 71]).

Let now I' be an r-th order total connection in ®. Recall that this is a first
order connection in ®" =1 hence T' : M — QY(®"~!) ie. it is a smooth map I :
M — I (M, ®) = I ~HJY M, ®)) satisfying

(24) (i) my_y o D(x) = j~H(~); (i) I7(a) o T(2) = jalin™');
(iii) J(bo 71'6_1) ol(x) = gL

xr

I gives rise to the reduction [[] : ® ! x II(M) — ®" as well as to the total
reduction (21).Each one of these can be used to transport connections: If TV is
another r-th order total connection in ® and & a connection in IT(M), ie. a linear
connection on M, we get an (r+1)-st order total connection [I[{T" x &) = Q*([I'])o
IV x &in ®. If IV =T we shall write I ¢ &, ie.

(25) Do = [T x6).
The explicit formulafor ' ¢ & : M — Ql(&ﬂ) is given by

(26) (Te&)(x) = I([T))(T(x),&(x)) or, more precisely,

L ]
*&)(x) = QUIN(T(x).£(x)) -

The functor [I] : &~ xII(M) — ®" is given in (16) with k = 1 and & ! replacing
®", 1e. by

(27) [[]:®" ! x (M) — &
(Z,X) = D(y) o X - j,[2] - T(2)™

where - denotes the prolongation of composition in 6’“_1, t=aX =a " 17 and
y = maX = bonmh 7. Also, [I] is a right inverse of the canonical projections
O" — &1 x TI(M), explicitly

(28) (7l _ o [WNZ,X)=2 and (J(bomy Ho[IN(Z, X)=X.
Lemma 1. (J(ﬂ';j) o[IN(Z,X) = [J(ﬂ';j) oF](ﬂ';jZ,X) whenever 1 < p < r.

Proof. We shall prove it first for » = 2 and p = 1. Since the composition in ®!

satisfies 7f (u - v) = 7} (u) - 7 (v), we can write

(I (g o [T)(Z, X) = I(mg)(T(y) o X - jp[2] - T(x) ™)
= J(mp)(T(y) 0 X) - fo[mg 2] - I (mp) L (2) ™1 = [I(mg) o [ (mp Z, X)
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as required. Applying this to "2 instead of ® we get the required result for
arbitrary » > 1 and p = r — 1. Assuming this for some p < r we derive it for p— 1

since (J(ﬂ';:%) o[IhH(Z,X) =

(I(mpZy) 0 I(m23) o (T2, X) = I(w)Z5) o [F(mZ1) o D(m 217, X)

= [I(mp2y) 0 I(m2y) o TN(mpZy o mp~1 2, X) = [J(my23) o )(m 252, X)

and this completes the proof. a

Note that if we write I'(,) = J(ﬂ';j) ol : M — Ql(&ﬂ’_l) for the underlying
total connection of order p, the formula just proved can be written as

(29) (J(ﬂ';j) o[IhH(Z,X) = [F(p)](ﬂ';jZ,X) whenever 1<p<r.

The relation between the reductions [I'(,)] and the total reductions {I'(;)} is
given by the recurrence formula

(30) {T)}72, X) =TT -1 }Z, X), X)

fors =2,...r, where I'(,y = I'. By (28) we get from (30) also (7;_;o{['()})(Z, X) =
(mi_q o M DUT -1} (4, X), X) ={T(.-1)}(Z, X)), ie

(31) m_1o{l} ={T-1)} for s=2,...r.

If h is a first order connection in ® and &;,...,&.-_1 first order connections in
TI(M), we can define he &y o---0&,._1 recurrently via (he&je---0& _o)e& 1. If
[=helie e _jthen h=a, Y ([)and & = (J(b)or, 1 >INT),i=1,...,r—1.
Such T" will be called a decomposable r-th order total connection. It is called simple
if & =~ =¢&-_1. A simple total connection of order risthus ' = hefe---o¢
or briefly I' = h o (#£)"~1. Note that in the notation of [Kol4S 74] T e ¢ would be
written as p(T', €), the simple r-th order total connection h e (e£)"~1 as p"~1(h, &),
and Proposition 6 of [Kol4S 74] says that a simple total connection is always semi-
holonomic. Recall that if an r-th order total connection T is semi-holonomic (ie. of
type (r—15,1)) then [[] : =1 xII(M) — (®"~!)! whereas I has a semi-holonomic
total reduction if {I'} : @ x II(M) — & C &

Proposition 2. Any r-th order total connection I' in ® has a semi-holonomic
total reduction.

Proof. We need to show that {T'} satisfies
(32) J(rtoHomp oI} =nl o {I}: ® x (M) — &°

whenever 1 < s < k < r (see the semi-holonomity condition (9)). If 1 <s < k <r
we can write, using (28) and (31),

(I(me21) om0 {TH(Z, X) = (I(m21) o {T iy D(Z, X)
= (I(m 1) o LD ({Tw-1)}(Z, X), X)
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which, by (29), (31) and (30), gives

[T (o2t o {Tk-1}(Z, X), X)
= [[sJ({T - }HZ, X), X) = {T'(xnHZ, X) = (75 o {T})(Z, X)),

as required. a

Note that in Proposition 2 it was essential that {I'} was the functor (21) and
not (20).

With each total connection I' : M — Q(®"~1) we can associate total connec-
tions

(33) J(J(ﬂéj%)ow“l)ofzM—)Ql(&ﬂ’_l) for 1<p—-1<s<r-—1

5

as well as the first order total connection I'(;y = J(r Yol - M — QY(®). Note
that we have denoted by I'(,) the connection (33) corresponding to s = p—1. There
are in (33) r — p+ 1 p-th order total connections, and T is semi-holonomic iff the
connections (33) depend only on p and not on s (see again the semi-holonomity
condition (9)). Thus T' is semi-holonomic iff

(34) F(p):J(J(ﬂéj%)ow?‘l)ofzM—)Ql(&ﬂ’_l) for 1<p<s<r-—1,

where I'(,) :J( - 1)oF

In particular, with an r-th order total connection I' : M — Ql(&ﬂ_l) we can
assoclate r — 1 second order total connections

(35) Ji Yol : M —QYY), 1<s<r—1,

where J(7™1) = J(x3 ™) o nt=1 : "1 — &1, Hence we get also 7 — 1 first order
linear connections on M, namely

(36) Cprs = F2(0) 0 It ol : M — QYII(M)), 1<s<r-—1.

Lemma 2.

(i) (T ’f) Ly forp=1,.
(i) (I °€)M5—FM5 fors_l,...r—land(Fo&’)Mrzf,

Proof.

(i) From (I'e&)(2) = J([I)(I'(x), &(
I(m_ ) (I &)(x) Z«" .
I(pr)(I'(2), & (2 )))
(Teé)=3(x)=)o

(i) For s = 2,...r— 1 we have (T' o &) s
JI(rg ) omy) o (Teé) =I7(b) o J(I(my~
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J(ni~ 1)0F Tars .
I = 7 we get (ToE) s () = 32(0)o3 17 )o(T) (2) = 97

z (0)oJ () I([T(L' (), () =
J(IB)onro[TN(T (x), &(x)) = I(I(b)od (5~ )o[[1)((x), &(x)) = &

) = I(pra)(F(x),&(x)) =
£(x),
because
J(bom™) o [I1(Z,X) = I(B)(I(m™") o T(y) o X - jolmg 2] - I(mp ™) o L(x) ™)
=JB)I(rh ) oT(y)o X =X, de. J(bon, ')o[l]=pry. O

The following result states that simple total connections are practically the only
ones that are semi-holonomic. Compare this with Theorem 5 and 6 of [Virsik, 71]

Proposition 3. IfT is an r-th order total connection then I' o¢ is semi-holonomic

ifé =Ty, fors=2,...r—1and T =he(e&)"~" where h=J(x; ') ol.
Proof. By (34) T ¢ is semi-holonomic iff

(37) (Fo&’)(p):J(J(ﬂéj%)ow?o(Fof):M—)Ql(&ﬂ’_l) for 1<p<s<r

By Lemma 2 the left hand side is I'(,y and the right hand side gives

IA(mTh o) o (T e€) = JI(rh) 0w~ 0 I(m]_y) o (T 0€)
= J(J(ﬂ';:b omi ol

forl<p<s<r—1,and
I (m2y) o (Led) =IJ(I(my)om ™) oJ(mi_y)o(Fe&) =I(I(my)om™t)ol
for 1 < p < 7. Thus I' e ¢ is semi-holonomic iff I'¢,y = J(J (7, Do ™ol for
I<p<s<r—land I'y) = Jz(ﬂ;:§)o(Fo€) M= Q! (<I>p 1), This means that
I' ¢ &£ is semi-holonomic iff T is semi-holonomic and
(38) Ly = Jz(ﬂ';:§) o(lFe&): M — Ql(&ﬂ’_l) for 1<p<r.
On the other hand, (26) and Lemma 1 allow us to give Jz(ﬂ';:%) o (T e&)(x) the
form

JI((m22) o [PD(T (@), &(x)) = I([I(myZ3) o T o (my 25 x idmqan)) (D(x), €(x)) =

J([Cp—n] o (I(myZ3) < idnan) (T (x ),5( )) = I([Lp-1)]) (I (m25) o D) (), & () =

J(C - p-1))(@),&(x)) = (Tp-1) ¢ )(2) -

Thus (38) is equivalent to F( y = F(p pelforl<p<or.

To summarize: I' e & is semi- holonomlc iff I" is semi-holonomic and I' = T'(,_1) ¢
for all p = 2,...r. We conclude by induction that I' e & i1s semi- holonomlc iff
F:ho&’o~~~o€wherehzf(1) as required. |

)

Recall that if an r-th order total connection I' is holonomic then the reduction
[[] satisfies [[] : @ =1 x [I(M) — (®"~1)!. We have just seen that any total
connection has a semi-holonomic total reduction. Similarly, we shall say that T’
has a holonomic total reduction if {T'} : ® x Il — ®" C ®". Kol4S proved
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Proposition 4. If h is a connection in ® and & a linear connection on M then
h e £ has a holonomic total reduction, explicitly

{het} : @ xII(M)—= &' x II(M) = &> C &
(39) (Z,X) = ([h](Z,X),X) = [h e £]([h](Z, X), X) € 7,

if and only if h is curvature-free and & is torsion-free.

See Proposition 5 and 6 in [Kol4S 75], where h e £ is denoted by p(h, ¢), and is
called torsion-free if (39) holds.

Lemma 3. 'e& : M — Ql(&ﬂ) is curvature-free if and only if both T' : M —
QY (® 1) and £ : M — QTI(M) are curvature-free.

Proof. We shall use the obvious fact that if C is a first order connection in ®
and ¢ : & = ¥ is a smooth functor then also the transported connection ¢{C"
is curvature free. Assuming ['e ¢ : M — Ql(&ﬂ) is curvature-free we get then by
Lemma 2 that both T' and ¢ are curvature free. Conversely, assuming both I' and
¢ curvature free we conclude easily that also I' x £ 1s curvature-free, so it suffices
to apply (25). O

The same will hold if Q* (6’“) and Q! (&V_l) are replaced by their semi-holonomic
and holonomic counterparts.

The following result is easily established from coordinate expressions of the
prolongations in question.

Lemma 4. If Y — M is a fibred manifold and r > 2 is an integer, then

LYY= J.(Y)N T (1 (V) 0 Ja(Jr2(Y))

Proposition 5. Ifr > 2 then the simple total connection hefe---e& = he(e) !
has a holonomic total reduction if and only if h is curvature free and £ is both
curvature and torsion free.

Note that in the case of r = 2 we do not need £ to be curvature free only
torsion-free: this is the quoted result from [KolaS 75].

Proof of Proposition 5: Let I' = h e (¢¢)"~! have a holonomic total reduction. By
(31) the same is true about {T'(3)} = {(h e £) @£} and so by Proposition 4 applied
to ®! the connection h e £ is curvature-free and ¢ is torsion-free. Apply Lemma 3
to h e & to conclude that h as well as & are also curvature-free.

Conversely, let h be curvature-free and ¢ both curvature- and torsion-free,
and let first » = 3. We get from (26) and (30) — written as {I'(s)} = [I'(s)] ©
({Ts=ny},pr2) : @ x [I(M) — ®* and applied to Liy=hef —

(hegot)(x)=Q ([heg])o((he&)xE)(z) =

Q' ([h o €]) o (Q'([]) x pra) (h(x),&(x)) =
Q' ({h e &} (h(x),£(x)) € Q1(P?)
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since by Proposition 4 {h e £}(Z, X) € ®*. Hence the reduction [h e ¢ e £] maps
®? x (M) into (®3)! and so {hel e} (7, X) =[hetel]({he&}(7,X), X) €
(®*)! for any Z € ® and X € II(M). On the other hand, applying Proposition
4 to the groupoid ®! we get [(h e &) e &] : @ x IT — (®1)? and so this time
{helel}(Z,X) = [(he&)e&]([R](Z,X), X) € (®')? for any Z € ® and X € 1I(M).
Since {h e & e &}(Z,X) € ®3 by Proposition 2, it suffices to apply Lemma 4 to
conclude that {hef e&}:® x (M) — ®3.

Assume now that {h e (e£)"72} : & x II(M) — ® 1, where r > 4. Writing
he =he (8&)" =3 we get similarly as before

(he @& @ &)(x) = Q' ([he #€]) o ((he &) x &) (x) =
Q' ([he @ €]) o (Q'([he]) x pra)(he(x), &(x)) = Q' ({he @ E}(he(x), &(x)) € Q1(@"T)

since by the induction assumption {hs ¢ £}(Z, X) € ®"~'. Hence the reduction
[he @ ¢ @ ¢] maps &~ x TI(M) into (") and so {hef e} (7, X) =[hele
E({hee}(Z,X),X) € (@ 1! for any Z € ® and X € II(M). On the other hand,
applying Proposition 4 to the groupoid ® =% we get [(he @ ) @ ¢] : ™72 x I —
(®"=2)% for any Z € ® and X € II(M). Since {h; o0&} (Z, X) € ®" by Proposition
2, it suffices to apply Lemma 4 to conclude that {h; ¢ £ ¢ £} = {h e (e£)"71} :
@ x (M) — @ O

Using {T'} of (20) or (21) to transport connections, we get immediately

Proposition 6. If h is a first order connection in ®, and &1, ...&, linear connec-
tions on M then any r-th order total connection I' in ® will give rise to their lift,
ie. an (r+ 1)-st order total connection {T'}{h x & x ---x &) in ®. In particular, if
&1 ==& =&, we get the total connection {T'}{h x &), using (21), rather than
(20), for the lifting.

Since {I'} of (20) is a right inverse of the canonical projection ®II" : &" —»
® x TI(M) x - x II(M) we conclude that — c.f. (14) —
(40) (x5 o {TW)(h x &) =hand (J(B)ori? o {T})(hx &) =&for i=1,...r.

Proposition 2 yields immediately

Proposition 7. The lifted (r 4+ 1)-st order total connection {T'}{h) is always
semi-holonomic. It is even holonomic if I' has a holonomic total reduction.

From Proposition 3 we conclude that if ' ¢ & = {T'}{h x &) then T is necessarily
simple, ie. ' = h e (e£)"~1. Conversely, if [ = h e (£)"~! then ' e & = h o (o&)"
and the recurrence relations

he(e)’ =T[he (of)s_l]<h o (of)s_l x&), s=1,...r,

together with (30) show easily that also {T'}{(h x £) equals h e (#£)". Thus we have
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Proposition 8. IfT is an r-th order total connection in ®, £ a linear connection
on M then the two (r+ 1)-st order total connections T' e & and {T'}{h x &) coincide
iff T = he(ef) "1, where h = J(m, 1) oT.

Proposition 9. The simple connection I' = h e (£)? is holonomic provided h is
curvature-free and ¢ is torsion-free. Forr > 3, the simple connection I' = he(e&)" !
1s holonomic provided h is curvature-free and & is curvature-free as well as torsion-
free.

Proof. This follows immediately from Propositions 4 and 5. |

* ok k

Let us now consider the special case of total connections on M, ie. when & =
(M) or @ is the trivial groupoid II°(M) = M x M. The r-th prolongation of
TI(M) will be denoted by (IT) and similarly in the semi-holonomic and holonomic
cases. Note that (II) = [+t (M), whereas ot (M) and TI"t1 (M) are in general
proper subgroupoids of (IT) and (IT)" respectively. On the other hand, the r-
th (semi-holonomic or holonomic) prolongation of II°(M) is TI" (M) (IT (M) or
" (M)). Thus an (r + 1)-st order total connection in I1°(M) is the same as an
r-th order total connection in TI(M). In particular, it will give rise to a total

reduction II(M) x TI(M) — (H)T or to a total reduction II(M) — ﬁ”’l(M)
depending on whether one takes for ® the groupoid (M) or II°(M). On the
other hand, an r-th order semi-holonomic or holonomic total connection in TI(M)
is not necessarily (reducible to) an (r + 1)-st order semi-holonomic or holonomic
total connection in TI°(M). We shall say that an r-th order total connection on
M, ie. in TI(M), is strongly semi-holonomic or strongly holonomic if it is a semi-
holonomic or holonomic respectively (r + 1)-st order total connection in I1°(M).

An r-th order total connection T' on M gives rise to a reduction [I'] : ﬁ’“(M) X
(M) — "+ (M) (c.f. (16)). If T is semi-holonomic then [I'] maps @T_l x TI(M)
into (@T_l)1 and if it is strongly semi-holonomic then it maps ﬁT(M) x II(M)
into ﬁT(]W)1 C (@T_l)l. By Proposition 2 the total reduction {I'} always maps
TI(M) xII(M) into @T and by the same result the total reduction of I, seen as an
(7 + 1)-st order total connection in I1°(M), is a functor TI(M) — ﬁH—l(M). This
generalises Proposition 9 of [Kol4S 74], which assumes that I' is semi-holonomic.

In fact, it is not hard to see that our {T'} : TI(M) — ﬁH—l(M) corresponds to f(T')
of [Kol4S 74].

The concept of a simple r-th order total connection depends again on whether
we take for @ the groupoid II(M) or 11°(M): a decomposable r-th order total
connection in II(M) is of the form £ e & o --- o &._1, where &y, &y,...&—1 are
linear connections on M, &y corresponding to the connection A in ® which is now
TI(M). Tt is simple if & = €3 = - - - = £,_1. The same connection {y el e---0&._
can also be seen as a decomposable (r + 1)-st order total connection in I1°(M),
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where the role of the connection h in T1°(M) is played by the trivial connection. If
it is simple, ie. &g = & = -+ - = &,_1, we shall say that £y e& 1 e---e&,._1 is strongly
simple. Proposition 3 applied to these two cases says then that if ' is an r-th order
total connection in TI(M) then T e £ is semi-holonomic iff T' is simple and T' e £ is
strongly semi-holonomic iff I is strongly simple. Compare this with Proposition 7
of [KolaS 74] which says that £e¢ - --e& = £ e (e£)" ™1 is not only a semi-holonomic
r-th order total connection in II(A) but also a semi-holonomic (r 4+ 1)-st order
total connection in I1°(M), ie. that £ @£ e - - @& is strongly semi-holonomic for any
linear connection & on M.

Applying Lemma 3, Propositions 4, 5 and 9 to & = TI(M) we obtain immediately

Proposition 10. The simple connection £y e £ has a holonomic total reduction
{& @&} TI(M) x (M) — (I1)? iff & is curvature-free and & is torsion-free;
for v > 2 the simple connection &; e (e£)"~1 has a holonomic total reduction
{&o o (&)"71}  T(M) x (M) — (I)" iff & is curvature-free and € is torsion-
free as well as curvature-free. For any r > 1 the r-th order simple connection
&g e (&) 1 is curvature-free if and only if both & and € are curvature-free. If & is
curvature-free and £ is torsion-free then £y @ £ £ 1s a holonomic total connection
and if £ is also curvature-free then &y o (8£)"~1 is a holonomic r-th order total
connection for any r > 2.

Applying the same results to ® = I1°(M) we obtain similarly:

Proposition 11. The connection £ on M has a holonomic total reduction {£} :
(M) — TI2(M) iff € is torsion-free, and for r > 1 the r-th order strongly simple
total connection (o&)" in TI(M) has a holonomic total reduction TI(M) — TI" (M)
iff ¢ is torsion-free as well as curvature-free. If ¢ is torsion-free then £ o¢ is a strongly
holonomic 2-nd order total connection in II(M) and if € is also curvature-free then
(e&)" is a strongly holonomic r-th order total connection in TI(M) for any v > 1.

Remark. Yuen introduced the concept of torsion for connections in higher order
semi-holonomic frame bundles, and KolaS generalised this to connections in the
first prolongation of any principal bundle (c.f. [Yuen 71] and [Kol4S 75]). In the
language of Lie groupoids one can speak of the torsion of a semi-holonomic total
connection in II(M) of arbitrary order » > 1, and of the torsion of a second
order total connection in ® where @ is any Lie groupoid. For a total connection
I’ being torsion free in this sense seems to be closely related to the holonomity
of its total reduction {I'}. More exactly, Kol4S has recently proved what in our
terminology amounts to the result that an r-th order holonomic total connection in
TI(M) is torsion-free in the sense of [Yuen 71] iff it has a holonomic total reduction
(M) - T1I"(M) C ﬁT(M), ie. when T is seen as an (r+1)-st order total connection
in [I%(M) (c.f. [KolaS , to appear]). On the other hand, Proposition 5 of [KolaS 75]
can be interpreted as saying that a second order total connection in @ is torsion-
free iff its total reduction ® x II(M) — 3 is holonomic.

There is a one-to-one correspondence between r-th order connections (in the
sense of [Ehresmann 56]) in TI(M) and r-th order total connections in TI(M), ie.
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an FM (M )-equivalence
(41) o QT (I(M)) — Q' (TT" (M)

(c.f [KolaS 74]). Let us summarize here some properties of g, derived in [Kol4S
74]. For any Lie groupoid ® one constructs FM (M )-morphisms

(42) Krp1 = k2 QTTH(®) x QU(IT" (M) — QY(®") and
(43) ke = kP QP x Q(®) — QH(@)

(for r = 1, see the proof of Proposition 1). If ® = TI(M) one defines g, of (41)
recurrently by g1 = id and ,(X) = &, (X, Gr—1(m]_, X)), where x, = iy ). It
is shown that this indeed defines an FM (M )-equivalence whose inverse is given
again recurrently by g7t = id and g7 (2) = k._1(Z,8,1)(I(x_,), Z), where
k.—y = k2 . Actually, g! is nothing but the map o,_; : Ql(&ﬂ_l) — @’“(CI))

referred to earlier, applied to ® = II(M). Moreover, g, maps Q (TI(M)) onto
Q'(IT'(M)). Proposition 4 of [Kol4S 74] can be stated as:

Proposition 12. If C is an r-th order connection in ®, Cy a first order connection
in ® and L a first order connection in TI" (M) then

(44) Kr1 (C % Co, L) = [C)(Clp x L)

where kp41 = /f?_l_l.

Applying this to "1 instead of ® and restricting ourselves to first order con-
nections, the connection [C{Cy x L) with C' = Cy =T and L = £ can be written
as I' @ & and we get immediately

Proposition 13. If T’ is an r-th order total connection in ®, and & a linear
connection on M then

(45) ko(D#D,6) =T o
where k- Is taken with respect to the groupoid 1 de. Ky : sz(&ﬂ_l) x QH(II(M))
— QYP").

Proposition 8 of [Kol4dS 74] can be stated as follows.

Proposition 14. If h is a first order connection in ®, and £ a linear connection
on M then

(46) ffr+1<(h *1;...*—/ha9r(5*"'*5)) =hefe --el.
r4+1)—times r—times r—times

In particular, for ® = TI(M) and h = ¢,
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(47) @«(f**f):foof
S—— S——
(r+1)—times (r+1)—times

49

Thus the equivalence (41) maps “ *-powers of £” onto “e-powers of £ for any

linear connection & on M.

Remark. It seems that formula (47) cannot be extended to different linear con-
nections on M. In fact, even for two linear connections &, and & on M we get
02(&0 ¥ €1) = Ka(&o * &1, &) since T2 (& + &1) = & and gy = id. By Proposition 12
this yields ¢2(§o * £1) = [€0](€1 % o) # [€ol(6o x &1) = o @ &1
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