Previous |  Up |  Next

Article

Keywords:
polynomial identity; nilpotent element; commutator ideal; associative ring; torsion free ring; center; commutativity
Summary:
Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
References:
[1] Abujabal H. A. S.: On commutativity of left s-unital rings. Acta Sci. Math. (Szeged) 56 (1992), 51-62. MR 1204738 | Zbl 0806.16034
[2] Abujabal H. A. S., Obaid M. A.: Some commutativity theorems for right s-unital rings. Math. Japonica, 37, No. 3 (1992), 591-600. MR 1162474 | Zbl 0767.16010
[3] Ashraf M., Quadri M. A.: On commutativity of associative rings with constraints involving a subset. Rad. Mat.5 (1989), 141-149. MR 1012730 | Zbl 0683.16025
[4] Ashraf M., Jacob V. W.: On certain polynomial identities implying commutativity for rings. (submitted). Zbl 0988.16518
[5] Bell H. E.: On the power map and ring commutativity. Canad. Math. Bull. 21 (1978), 399-404. MR 0523579 | Zbl 0403.16024
[6] Bell H. E.: Commutativity of rings with constraints on commutators. Resultate der Math. 8 (1985), 123-131. MR 0828934 | Zbl 0606.16023
[7] Hermanci A.: Two elementary commutativity theorems for rings. Acta Math. Acad.Sci. Hungar. 29 (1977),23-29. MR 0444712
[8] Jacobson N.: Structure of rings. 37 (Amer. Math. Soc. Colloq. Publ. Providence, 1956). MR 0081264 | Zbl 0073.02002
[9] Kezlan T. P.: A note on commutativity of semi-prime PI- rings. Math. Japonica 27 (1982) 267-268. MR 0655230
[10] Kezlan T. P.: A commutativity theorem involving certain polynomial constraints. Math. Japonica 36, No. 4 (1991),785-789. MR 1120461 | Zbl 0735.16021
[11] Kezlan T. P.: On commutativity theorems for PI-rings with unity. Tamkang J. math. 24 No. 1 (1993), 29-36. MR 1215242
[12] Komatsu H.: A commutativity theorem for rings. Math. J. Okayama Univ. 26 (1984), 135-139. MR 0779780 | Zbl 0568.16017
[13] Komatsu H.: A commutativity theorem for rings-II. Osaka J. Math. 22 (1985), 811-814. MR 0815449 | Zbl 0575.16017
[14] Nicholson W. K., Yaqub A.: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419-423. MR 0563755 | Zbl 0605.16020
[15] Psomopoulos E.: A commutativity theorem for rings involving a subset of the ring. Glasnik Mat. 18 (1983), 231-236. MR 0733162 | Zbl 0528.16017
[16] Psomopoulos E.: Commutativity theorems for rings and groups with constraints on commutators. Internat. J. Math. & Math. Sci. 7 No. 3(1984), 513-517. MR 0771600 | Zbl 0561.16013
Partner of
EuDML logo