Previous |  Up |  Next

Article

References:
[1] G. Chartrand A. M. Hobbs H. A. Jung S. F. Kapoor, C. St. J. A. Nash-Williams: The square of a block is Hamiltonian connected. J. Combinatorial Theory B, 16, 1974, 290-292. MR 0345865
[2] H. Fleischner: On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs. J. Combinatorial Theory B, 16, No. 1, 1974, 17-28. MR 0332572 | Zbl 0256.05120
[3] H. Fleischner: The square of every two-connected graph is Hamiltonian. J. Combinatorial Theory 3, 16, No. 1, 1974, 29-34. MR 0332573 | Zbl 0256.05121
[4] C. St. J. A. Nash-Williams: Problem No. 48; Theory of graphs. (edited by P. Erdös and G. Katona), New York, Academic Press 1968.
[5] M. D. Plummer: On minimal blocks. Trans. Ameг. Math. Soc. 134, 1968, 85-94. MR 0228369 | Zbl 0187.21101
[6] St. Říha: A new proof of the theorem by Fleischner. to appeaг.
[7] M. Sekanina: Problem No. 28, Theory of graphs and its Applications. Czechoslovak. Acad. of Sciences, Prague, 1964.
[8] Z. Skupien T. Traczyk: Personal communication.
Partner of
EuDML logo