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In memory of Milan Sekanina

Abstract. This paper. deals with problems concerning the existence of such Hamiltonian cycles
or paths in squares of graphs containing some edges of the original graphs. Using a method due to
Riha several results on blocks could be found generalizing previous ones.
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0. It has been M. Sekanina who 25 years ago posed the question for the structure
.of those graphs G the square of which has an open or a closed Hamiltonian line
(i.e. G* is traceable or Hamiltonian, resp.), cf. [7]. Since that time many results
concerning this problem could be obtained; to the most important and well-
known ones among them certainly belong the Theorem of Fleischner [2], [3]
verifying a conjecture of Plummer and Nash — Williams [4] (Every block G with
at least 3 vertices has a Hamiltonian square) and its generalization by Chartrand,
Hobbs, Jung, Kapoor, Nash—Williams [1] (For every block G its square is
Hamiltonian-connected and, if G has at least 4 vertices, G* is 1-Hamiltonian as
well). Recently, St. Riha, a young former co-worker of Sekanina’s succeeded in
finding an excellent proof of the following statement (cf. [6]) which implies
Fleischner’s theorem and its generalization mentioned above.

Theorem 0: Let G be a block with at least 3 vertices and x any vertex of G. Then
there are two different G-neighbours a, b of x and a Hamiltonian path in G* — x
joining a and b. : a

Using Riha’s proof-method and his theorem, in the next sections of this paper
we shall get several results on the existence of Hamiltonian cycles in G? containing
some edges of G, especially a partial answer to the question, if the Hamiltonicity
of G? always implies the existence of a Hamiltonian cycle in G* containing an
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edge of G. (In case that this conjecthre were true it can be easily shown [8] that
for any such G even there is a Hamiltonian cycle in G? containing at least two
edges of G.) .

All graphs considered here are supposed to be undirected, simple and finite
(possibly empty). Let G = (V, E) be a graph with the vertex-set ¥(G) : = ¥V and
the edge-set E(G): = E. If x,y eV, x # y, are the end-vertices of an edge /e E
we denote this edge / by the couple {x, y}. We say that xe V is a G-neighbour of
yeV iff {x,y}eE. The vertex x is called a G-neighbour of M c V iff x¢ M
and x is a, G-neighbour of some ye M. If X is a vertex (a subgraph or a vertex-
subset) of G then N(X : G) denotes the set of all G-neighbours of the vertex X
(of the set of all vertices belonging to X), and G — X is defined to be the subgraph
arising from G by deleting the vertex X (all vertices of X) and all edges incident
with X (with some vertices of X). By G(M) we denote the induced subgraph of G
generated by M < V. The valency (degree) of the vertex x € V(H) in the subgraph H
of G is denoted by v(x : H). The square G* of G is the graph with V(G?) := V(G)
and {x, y} € E(G?) iff the distance of x and y in G is 1 or 2. A block is a graph
which is 2-connected (non-trivial block) or a path of length 1 (trivial block). A block G
is minimal iff there is no edge / € E(G) such that the graph arising from G by delet-
ing Iis a block. Paths and cycles w are comprehended to be special graphs (possibly
subgraphs of a given graph); as usual they are represented by sequences of the
vertices passed by w. Generally we shall not distinguish between a path (or a cycle) w
and its representation by a vertex-sequence. A path of length 0 is called trivial.
Ifp = (xq, Xy, -5 X, _1, X,) is a vertex-sequence the inverse sequence (X,, X, _1, ---»
Xy, Xo) is denoted by p~?!, and if ¢ = (y,, y;, ..., y,) is another vertex-sequence
then (p, q) is defined to be the vertex-sequence (Xg, X5 «+os Xp_15 Xps Yos Vis coos Vs)s
analogously in similar cases. The number of elements of a set M is denoted by |M|.

1. Let G be a graph, w a non-trivial path in G and x an endvertex of w.

Definition. S is a (G2, w, x) —basic—set iff S is a set of pairwise vertex-disjoint

paths in G* — w with |J ¥(p) = V(G) — V(w), and there is a mapping f from S
. pEeS
into the power-set of ¥ (w) with the following properties:

() S=S,uUS, where S;:={peS:|f(p) =i}, i=12;

() for each peS,, if {a,, a,} = f(p) and {e,, e,} is the set of the endvertices
of p (possibly e, = e,), it holds: {a,, e,}, {a,, e;} € E(G) or {a,, e,}, {a,, e}
€ E(G);

(3) for each p e S, if {a} = f(p), then {a, e} € E(G) holds for every endvertex e
of p; :

@) f(p) n f(p') = D for any different p, p’ € S;

(5) if S, = & then there is a z e V(w), z # x such that z ¢ f(p) for each peS.
The construction given by Riha in [6]—it is the main point of his proof of
Theorem 0 — verifies the following

3
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Lemma. Let G be a graph, w a non-trivial path in G, x an endvertex of w and S
a (G?, w, x)-basic-set. Then there is a G-neighbour x' of x and a Hamiltonian path
in G? joining the endvertices of w and containing the edge {x, x'} and each pe S

as a subpath. a

2. Using this Lemma we shall prove some generalizations of Riha’s Theorem 0.
For this end we introduce the following notations. Let G be a non-trivial block
(i.e. |V(G)| = 3) and w a path in G. By C,(w) and C,(w) we denote the set of all
components C of the graph G — w with |V(C)| = 1 and |V(C)| = 2, respectively,
and we define C(w) := C,(w) U C,(w). Let C € C(w). Then N(C : G) < V(w) and
IN(C : G)| = 2; for C e C,(w) at least two vertices of C have G-neighbours in
N(C : G) and therefore there are two different vertices in C having a pair of different
G-neighbours in N(C : G). For every C € C(w) we form the graph G arising from
G(V(C) u N(C : G)) by contracting all vertices of N(C : G) to a new vertex 0 ¢
¢ V(G) (the edges between C and N(C : G) in G become edges between C and 0
in G¢, of course), where resulting multiple edges are replaced by a simple edge
with the same endvertices and resulting loops are removed. Obviously, G is
a block, and |V (G.)| = 3 if C e C,(w). Let us suppose:

(6) For each C e C,(w) there is given a Hamiltonian path ¢ in G2 — 0 joining
two Gc-neighbours of 0. .

Furthermore, for each Ce C,(w) we define h. := C (the trivial path consisting
of the single vertex of C). Then it follows that h. and h. are vertex-disjoint if
C # C', C, C’' e C(w). Denote by P the set of all subpaths arising from the family
(hc : C € C(w)) by deleting, for each hc, all edges in hc which do not belong to
E(C?). We remark that P consists of pairwise vertex-disjoint paths in (G — w)?
the endvertices of which are G-neighbours of some vertices of w, that every edge
belonging to E(hc) n E(G) for a C € C(w) is also an edge of some p € P, and that
the (disjoint) union of all sets ¥(p) with p € P results in V(G) — V(w). Now the
following algorithm (*) is applied to P (see Riha [6]):

(*) If there exist different paths p, p’ € P with the property that there is a z € V(w)
which is a G-neighbour of an endvertex x of p as well as of an endvertex x’ of p’,
we take such a pair p = (q, ..., x),p’ = (x', ..., b) with x, x’ e N(z: G) for a z €
€ V(w), form the path p” = (p, p’) = (a, ..., X, X', ..., b) which is a path of G> — w
whose endvertices a, b are G-neighbours of some vertices of w (possibly of only
one vertex of w), and replace the elements p, p’ in P by p”. We obtain the set P’ :=
:= (P — {p,p'}) U {p"} and repeat this procedure with respect to P’, and so on.
After a finite number of steps —say r—this algorithm stops, and the resulting set
S := P has the properties:

(7) S consists of pairwise vertex-disjoint paths in G*> — w the endvertices of
which are G-neighbours of some vertices of w;

(8) for any different elements p = (x, ..., x’) and ¢ = (, ..., ¥") of S, the end-
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vertices of these paths satisfy
N({x, x'} : G) a N({y, y'} : G) 0 V(w) = &;
©) UV(p) = V(G) - V(w);

PEeS N
(10) for any C € C,(w) every /€ E(hc) n E(G) is also an edge of some peS.

Let S(h¢ : C € C(w)) denote the set of all such path-sets S which can be obtained
if we apply algorithm (*) to P in any possible way. Then it is easy to see that every
S € S(he : C e C(w)) fulfils (10) and all properties of a (G2, w, x)-basic-set with
the exception of (5), where x is either endvertex of w. The mapping fis chosen as
follows: If for a pe S with |F(p)| = 2 the endvertices e,, e, of p satisfy m:=
:= [V(w) n (N(e, : G) U N(e, : G))| = 2, we take arbitrary a; € N(e; : G) n V(w),
i =1,2, with a, # a, and define f(p) := {a,, a,}; if m =1 we have to put
flp) := {a} = N(e, : G) n V(w). For a peS with [F(p)| =1 it follows
IN(e : G) n V(w)| = 2 for the vertex e of p if pe C,(w), and we take a,,a; €
€N(e:G)nV(w), a, # a,, and f(p) := {a,a,}; if p¢ Cy(w) and |[N(e:G) n
N V(w)] = 2 we proceed as before; if p ¢ C,(w) and [N(e:G)nV(w)| =1 we
define f(p) := {a} with {a} = N(e: G) N V(w).

3. Now we suppose G to be a minimal block with (V(G)) = 3, and let x and y
be different vertices. Then there exists a cycle in G containing x and y. Because
this cycle has two different vertices a, b with v(a : G) = v(b : G) = 2 (see Plummer
[5], Riha [6]), at least one of the two independent paths joining x and y which
form a separation of this cycle must contain a vertex z # x with v(z: G) = 2.
A path p satisfying this property (i.e. p joins x and y and contains a vertex z # x
with v(z : G) = 2) is called an admissible (x, y)-path in G and x its initial vertex.
(Obviously, an admissible (x, y)-path is not necessarily an admissible (y, x)-path.)
Note that for any x # y there is an admissible (., y)-path in the minimal block G;
if {x, y} € E(G) then every path in G of length = 2 joining x and y is an admissible
(x, y)-path, and if {x,y}¢ E(G) then there is an admissible (x, y)-path which
is not a Hamiltonian path. Let w be an admissible (x, y)-path in G and assume (6)
for this w. Then there is a ze V(w), z # x with v(z : G) = 2. Assume that the
family (k¢ : C € C,(w)) satisfies the additional property:

(6a) If v(y : G) = 2 and y is not a G-neighbour of x and the (only) G-neighbour
y* ¢ V(w) of y belongs to a component C* of G — w fulfilling C*C,(w), then hc*
contains an edge {y*, z} € E(G) with some ze N(y*:C¥). Now consider an
S e S(hc : C e C(w)) and a mapping f described at the end of section 2. Then it
follows that the set S, = {pe S :|f(p)] = 2} is empty only in the case that for
each p the premise p € S implies |V(p)| = 2 and |V(w) N (N(e, : G) U N(e, : G)| =
=~ 1, for the endvertices e,,e, of p or |V(p) =1 and |N(e: G) nV(p)| = 1
with (€) = p. In the first case we conclude f(p) = N(e, : G) n V(W) = N(e, : G) n
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nVw) = {a,} because of (7); obviously, v(a,: G) = v(a,:w) + v(a,: G({ey, e,,
a,})) = 3, and thus we have a, # z, i.e. z ¢ f(p).

In the second case we have f(p) = N(e: G) n V(w) = {a,} for the vertex e
of p; further v(a,:G) = v(a,: w) + v(a,: G({e,a,})) 22+ 1 =3 if a, is an
inner vertex of 'w, and if a, = y and {x, y} € E(G) then v(y : G) 2 v(y : G(W)) +
+v(y:G{e,y}) 22+ 1 =3. Now let a, =y, {x,y}¢E@G); if v(y:G) =2
then because of (6a) and (10) it follows that {y*, z} € E(p) for some ze N(y*:G — w),
where y* € N(y : G) — V(w). This is a contradiction to [F(p)| = 1. Hence in every
case v(a,: G) = 3, and thus g, # z, i.e. z ¢ f(p). So we have proved z ¢ f(p) for
each pe Sif S, = 0. Consequently, S and f fulfil (5); using the statements of
section 2 and the notations introduced there we get

Corollary 1. Let G be a minimal non-trivial block, x, y € V(G) with x # y, and w
an admissible (x, y)-path in G. Furthermore, we assume that we are given a family
(hc : C e C,(w)) according to (6) and fulfilling (6a). Then every S e S(h,: C € C(w)
is a (G*, w, x)-basic-set satisfying property (10).

For any block H with |V(H)| = 3 we define .

s(H) := [V(H)| Y, (u(x: H) —2) = 2[V(H)I| |CI(EH)| — [V(H))).

xeV(H)

a

Obviously, s(H) = 0 because of v(x : H) = 2 for xe V(H), and s(H) = 0 iff H is
a cycle. Referring to the notations of section.2 we can prove

Corollary 2. Let G be a non-trivial block not being a cycle, and w a non-trivial

pathin G with the endvertices x, y. Then for every C € C,(w) the graph G is a non-
trivial block satisfying

a1  S(GY) < 5(G).

Proof: C e C,(w) implies (see section 2) |V(C)| = 2,|N(C : G)| = 2, N(C:G) = .
< V(w), and V(C) n N(w : G) = N(0 : Go). Hence, |V(Gc)| < |V(G)|, and G is
a block with (V(G¢)) = 3. Let N(C : G) — {x,y} = {ey, ..., &}, and write ¢, = x
and e, = y. Obviously, for. each ¥& V(C) we have v(¥:Gp) < v(x:G). If

k

X, y¢ N(C:G)ywegetk = 2and2 < v(0: Go) £ Y (v(e; : G) — 2);if xe N(C : G),
i=1 .

k
y¢ N(C:G)it follows k =2 1 and 2 < v(0 : Go) = Z (v(e; : G) — 2) + 1, analog-
i=o
ously for ye N(C: G), x¢ N(C:G); if x,ye N(C : G) we find k = 0and 2 <

k+1
< 0(0:Ge) £ Y (v(e; : G) — 2) + 2. In each of these cases we obtain
i=0
5(Ge) = V(G (v(x : G) = 2) = 4s(G),
xeV(G)
with 1 = —I—II;’%;TC)?L < 1. This results in (11) because G is not a cycle and therefore

s(G) > 0.
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Note that for blocks H, G with |V(H)| = 3, where H is a subgraph of G and
H # G, it follows s(H) < $(G).

4. Generalizing Riha’s theorem (Theorem 0) we show

Theorem 1. Let G be a block and x, y adjacent vertices. Then there is a G-neighbour
X' of x and a Hamiltonian path in G* joining x and y and containing the edge {x, x'}.

Proof: Obviously, the assertion is true if | V(G)| = 2 and also if G is Hamiitonian.
Assume, Theorem 1 fails to hold. Let G be a block with the least value of s(G)
such that G does not fulfil the property stated in this theorem for some adjacent
vertices x # y. Hence it follows, that G is a minimal block with |[V(G)| = 3
being not Hamiltonian, i.e. G is not a cycle, and therefore s(G) > 0. Because G is
a minimal block there is an admissible (x, y)-path w. Obviously w is a non-Ha-
miltonian path. According to section 2 we form the set C(w) = C,(w) U C,(w),
and for each C e C,(w) we consider the graph G which is a non-trivial block.
Owing to Theorem 0 (cf. [6]) there exists a Hamiitonian path A. in G5 — 0 joining
two Ge-neighbours of 0; therefore we can find a family (h¢ : C € C,(w)) realizing
(6). (Note' that (6a) is trivial because of {x, y} € E(G).) Owing to Corollary 1
every S € S(hc : C € C(w)) is a (G?, w, x)-basic-set. Because w is a non-Hamiltonian
path, S(hc : C € C(w)) # . Taking an S € S{h.: C € C(w)) and using the Lemma
of section 1 we get a Hamiltonian path in G? joining x and y and containing an edge
{x, x'} for some G-neighbour x’ of x, which is a contradiction to the assump-
tion on G. o

Theorem 2. Let G be a non-trivial block, and x, y different vertices. Then there
are different -G-neighbours a, b of x, a G-neighbour z of y, and a Hamiltonian path
in G*-x joining a and b and containing the edge {y, z}.

Proof: The assertion holds for Hamiltonian graphs, i.e. for all non-trivial
blocks G with s(G) = 0. Assume Theorem 2 to be not true, and consider a block G
with |V(G)| = 3 and the least value of s(G) such that the property stated in
Theorem 2 is not fulfilled for some x # y. Then G is a minimal non-trivial block
and not Hamiltonian (i.e. not a cycle), what implies s(G) > 0.

Case 1: Suppose that there is a cycle k in G with x e V(k) and y ¢ V(k). Let b
be a k-neighbour of x. Deleting the edge {x, b} in k we obtain a non-Hamiltonian
path w which is an admissible (x, b)-path. _

According to section 2 we form the set C(w) = C,(w) U C,(w), and for each
C e C,(w) we consider the graph G¢ which is a block with |V(G¢)l 2 3.

a) Let ye V(T) for some T e C,(w). Then Corollary 2 yields s(Gy) < s(G);
hence it follows that there is a Hamiltonian path h; in G} — 0 joining two
Gr-neighbours of 0 and containing an edge {y, z} with a suitable Gp-neighbour z
of y. Then y, z # 0, and therefore z is a G-neighbour of y as well. Thus {y, z} €
€ E(hy) N E(G). For every C e Cy(w), C # T, Theorem 0 yields a Hamiltonian

66



HAMILTONIAN PROPERTIES OF SQUARES OF GRAPHS

path h¢ in GZ — 0 joining two G¢-neighbours of 0. In this way we have succeeded
in finding a family (hc: C € C,(w)) realizing (6). Owing to Corollary 1 every
SeS(h.: CeCw)) # & (w is a non-Hamiltonian path) is a (G?, w, x)-basic-set
satisfying (10) and consequently, {y, z} € E(p) for some p € S. Using the Lemma
of section 1 with such an S we obtain a G-neighbour a of x and a Hamiltonian
path in G? joining x and b and containing the edges {x, a} and {y, z}. Because of
[V(G)] = 3 we have a # b, and we have found a Hamiltonian path in G* — x,
joining two different G-neighbours a, b of x and containing the edge {y, z} € E(G)
This is a contradiction to the assumption on G.

b) Let y € V(T) for some T e C,(w). Then T consists of the vertex y, and y is
a G-neighbour of exactly two vertices z’, z € ¥V(w) = V(k) which cannot be adjacent
in G (note that k£ has not diagonals because G is a minimal block). We may assume
z # x. Both paths w,, w, joining 2z’ and z and forming a separation of the cycle k
must contain at least one inner vertex (# z, z'). Then it follows that G — y is
a block with |V(G — y)| = 4 and s(G — y) < s(G). Thus (because of x # z) there
is a Hamiltonian path p in (G — y)* — x jeiring two (G — y)-neighbours a, b’
of x and containing an edge {z, 1} € E(G — y) < E(G). Replacing the subpath (z, 1)
(which corresponds to the edge {z, 1}) in p by (z, y, f) which is a path of length 2
in G%, we get a Hamiltonian path p’ in G — x joining different G-neighbours a, b’
of x and containing the edge {y, z} € E(G). But this is a contradiction to the
assumption on G.

Case 2: We have to suppose thet every cycle containing x must contain y as
well. Note that at least one such cycle exists. Each of the components of the graph
G — {x, y} is adjacent with x and with y in G and contains exactly one G-neighbour
of x. If x and y are adjacent in G, then G — {x, y} has exactly one component
(G is a minimal block), say T,; otherwise G — {x, y} has at least two components,
say T, T,, ..., T,, r = 2.

a) Let {x, y} ¢ E(G). By H, we denote the graph arising from H, := G(V(T)) v
v {x, y}) by adding the new edge {x, y}, i = 1, ..., r. Obviously, H, is a block with
|V(H)| = 3 and s(H;) < s(G) (because of r = 2), and, furthermore, v(x : H;) = 1,
o(x: H)=72,i=1,..,r Consider any i € {1, ..., r} and write H and H instead
of H; and H,, respectively. Note that H arises from H by deleting the edge {x, y}.
Let z denote the H neighbour of x being different from y, and let p be any path
in H joining x and y and not containing the edge {x, y}; such a path exists, for H
is a block. Then p is a path in H which contains all cutpoints of H. (A cutpoint 2’
of H with z’ ¢ V(p) would imply that both x, y belong to the same component €
of H — 7, and that there is at least another component C’ # C; therefore the
edge {x, y} € E(H) joins vertices of the same component C of H — z’, and we get
at least two components of H — z’, in contradiction to the fact that H is a block.)
Obviously, one cutpoint of H is z. Hence it follows that p can be represented by
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the sequence

p=(xz=z, 0322y ey Zyy ey 24 v y) =
= (x,Pl’pZ’ "',pt l’pl)’

where zy, 25, ..., z(t 2 1) are all the (different) cutpoints of H, and p, = (x, z = z,),
Pk = (2, - ?Zk+l) = (Pk’ Zehk=1,...,¢t— 1, and p: = (2, ..., y) are non-
trivial subpaths of p forming a separatlon of p. (Of course, z, # y holds because H
is a block.) With z, := X, z,,; := y the couple {z, z,, ,} of the endvertices of p
determines a (maximal) block B, of H (B, is the maximal subgraph in H being
a block and containing z, and z,,), k =0, 1, ..., #, and these B.s satisfy the
properties: V(B) N V(By,1) = {zxs1} k=0, ...,t — 1, V(B) n V(B,) = & for
0l<k<t withk+#1+1,and By, B,, ..., B, are all the (maximal) blocks
of H. (For otherwise we could find a path in H joining x and y and not containing
every cutpoint of H, or we would get a cutpoint of H, respectively, but we have
seen that neither of these situations is possible. To put it concisely: The block-
cutpoint-graph of H is a path, and x and y belong to its different end-blocks.)
Of course, B, = p, = (x, 2).

H: s——eIrsTss b 2 < ...’*M <3 J
30 'B‘ 3‘- 3&-4 3&

Because of s(H) < s(G) we have s(B,) < s(G) if [V(By)| =3, k=0,1,...,¢
Hence it follows that for such a B there is a Hamiltonian path in By — 7,
joining two suitable By-neighbours Z +1 and zg ., of z +1 and containing some
edge {2, Z} € E(B,). We can wrlte this path in the form (z,€+ Lo vovs Zks Zks ovs Zhg1)
and consider the two subpaths g, := (2 415 s Z) and gy 1= (zk, vees Z,1); MOtE
that {z,, Zi}s {Zks 15 Zkat1)> Zhets Zke1) eE(H). In case that |V(BY)| =2,k = 1,
we have {z, z,, ,} € E(H) and we consider the maximal sequence By, By 15-++, By, 1
with V(B )l =2,j=0,1,....0, and k < k + | <t (that is: Either k+1l=t
orifk +1< tthen it holds |V(Bk+,+1)l 3); now we define q; := &, qv:= (z)
if 1 is even, and q; := (z), q¢ := & if / is odd. Then the sequence

q:= (qr’qt-i’ EEE) ql’ qlll’ qg’ "-’q;,)

is a Hamiltonian path in (H — x)* — y satisfying the following property:

If |[V(By)| = 3 then g joins two B,-neighbours (and therefore H-neighbours)
Y=z and Y 1= zjh, of y = Z1,43
Cif [V(B)|l = 2 and ¢ = 2 then ¢ joins some B,_;-neighbour y' of z, (namely
¥ =z if [V(B,_)| = 3, and y’ :=z,_, if |V(B,_,)| = 2) with the B,-neighbour
yi=z of y;

if [7(B)l = 2 and t = 1 then ¢ = (z,) consists of the only B,-neighbour y’ :=
=y 1= z; of y.
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Thus we can write ¢ = (', ..., y"), where y” is an H-neighbour of y and y’ is
an HZ2-neighbour of y.

Furthermore, from Theorem 1 it follows, that for each block B, k =0, ..., ¢,
there is 2 Hamiltonian path gi in B? joining the vertices z, ; and z, and containing
some edge {z,, 1, zx+1} € E(B,). (This is obvious if z, and z., are adjacent. If they
are not adjacent we consider the block B consisting of B, a new vertex 0 and the
edges {0, z,} and {0, z,,,}. Then because of r > 2 we have s(B) < s(G), and this
remains valid also for = 1 if # > 2, i.e. in the next subcase b) only the situation
for ¢ = 1 must be considered separately. Hence it follows, that there is a Hamilto-
nian path in B? — 0 joining the two B-neighbours of 0 and containing some edge
{Zes1, Z+1) € E(B).) We can write We can write g% = (Zky 15 Zgs1s --» Ze)s kK = 0,
1,...,t, and with ¢ := (Z§,+1, or z)—ie. @ = (Zxy1>T8) — k=0,1, ..., 1,
it is obvious that the sequence

q:= (@7 415 > 40)
is a Hamiltonian path in H? — y joining an H-neighbour y* := z* , of y and the
vertex x and containing the edge {z, x} € E(H) (because z} is a B,-neighbour of
z, = z and therefore z} = x).

Thus we have proved the following assertions for i = 1, ..., r:

There is a Hamiltonian path g¢; = (¥}, ..., »{) in (H; — x)> — » joining an
H}-neighbour » of y and an H-neighbour y; of y.

There is a Hamiltonian path §; in H? — y joining an H-neighbour yi of y
and the vertex x and containing the edge {z, x} € E(H,), where z' is the only
H-neighbour of x; write §; = (f, ..., 2, x) and g, := (], ..., 2) = G, — x.

Because V(G — {x,y}) and E(G) are the disjoint unions of the sets V(H; —
— {x, y}) and E(H)), respectively, and V(H;) n V(H;) = {x, y} if i # j we obtain:

@ 5942935 Gas oo T-1540) if r is even and
(21;1,)’,‘12,&3,&;1, ---,a:—ll,a,.) if r is odd

is a Hamiltonian path in G* — x joining the two G-neighbours a := z'and b := 2
of x and containing the edge {y1,y} € E(G) (and 'the edge {y, y3} € E(G) if r is
even as well). However, this is a contradiction to the assumption on G.

b) Let {x, y} € E(G). Then G — {x, y} has exactly one component T,. Write
H := G and let H be the graph arising from H by deleting the edge {x, y}. Obvious-
ly, we have the same situation as considered in subcase a) with respect to the
graphs H, H with the only exception that now s(H) < s(G) does not hold (because
of H = G). However, if z = 2 (note that ¢ + 1 is the number of the blocks of H)
the construction of the path § remains valid. Now let ¢ = 1. Then G consists
of the block B := B, containing the two different vertices z; = z and z, = y,
of the vertex x and of the edges {x, z} and {x, y}. Obviously, s(B) < s(G) if B is
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a nontrivial block. To construct a path § wanted it suffices to construct a Hamilto-
nian path h in B? joining z and y and containing some edge {y, y*} with y*e
€ N(y : B). If |[V(B)| = 2 or B is Hamiltonian (i.e. B is a cycle because G—and
therefore B—is a minimal block) or B has a Hamiltonian (z, y)-path, the existence -
of such an 4 is obvious. So let B be a nontrivial block being not a cycle and therefore
0 < s(B) < s(G). Now consider an admissible (y, z)-path # in the minimal block B.
Then {y, z} € E(B) is not possible because G is a minimal block. Thus {y, z} ¢ E(B),
and we may suppose that #w is not a Hamiltonian path in B. Then we proceed as
in the proof of Theorem 1 (now for B instead of G, y instead of x, and z instead
of y, of course) with the following modification: If v(z : B) = 2 and the only
B-neighbour z* ¢ V(w) of z belongs to a componént C* of B — w fulfilling C* e
€ C,(W), we choose a Hamiltonian path h.. of B..— 0 joining two B.. —neighbours
of 0 and containing the edge {z*, z'} € E(B) with some 2z’ € N(z* : B..); such an h.
exists because of s(Bgs) < s(B) < s(G). Hence, besides (6) also (6a) is fulfilled
by the family (h. : C € C,(#)) having been chosen, and Corollary 1 and the Lemma
of section 1 yield the required Hamiltonian path A.

So in every case there is a Hamiltonian path g in H> — y joining an H-neighbour
y* of y and the vertex x and containing the edge {z, x} € E(H), where z denotes the
only H-neighbour of x; write § = (y*, ...,2z,x) and q := (y*, ...,2) = § — z.
Then (g™, ») is a Hamiltonian path in G* — x joining the G-neighbour z % y
of x with the G-neighbour y of x and containing an edge {y*, y} € E(G). But this
is a contradiction to the assumption on G. Thus Theorem 2 is proved. a

Now we can generalize Theorem 1 to

Theorem 1' Let G be a block and' x, y, z vertices with x # y. Then there is
a G-neighbour z' of z and a Hamiltonian path in G? joining x and y and containing
the edge {z, z.}.

Proof Form the graph H consisting of G, a new vertex 0 and the edges {0, x}
and {0, y}, and apply Theorem 2 to the nontrivial block H and the vertices 0 and z
(instead of G and x and y, respectively). o

5. Let G be a connected graph, z e ¥(G) a cutpoint of G, further G; and G,
two connected subgraphs of G forming a non-trivial separation of G with V(G,) n
N V(G,) = {z} (that means: ¥(G,) U V(G,) = V(G), E(G,) n E(G,) = E(G({z})) =
=, E(G,) v E(G,) = E(G), and G,, G, # G) and h; and h, two paths in G?
and G2, respectively. Now we consider the following properties:

(12) hy is a Hamiltonian path in G? joining two different G-neighbours of =z,
and h, is a Hamiltonian path in G2 — z joining two different G-neighbours of z
if [V(G, — 2)| 2 2 and consisting of the only G-neighbour of z in G, if
(G, — 2)| =

(13) hyis a Hamxltoman path in G? joining z with a G-neighbour of z, and 4,
is a Hamiltdnian path in G2 joining z with a G-neighbour of z.
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Definition. (h,, G,) v (h,, G,) iff property (12) is satisfied; (h,, G,) « (h,, G,)
iff property (13) is satisfied.
Representing the paths h,, h, by vertex-sequences we see immediately

Corollary 3. If (h,, G,) & (h,, G;) then
hy + hy := (hy, hy, 2),

where 2’ is the initial vertex of h,, is a Hamiltonian cycle in G*. If (h,, G,) & (h,, G,)
then
hy O hy = (hy, by

is a Hamiltonian cycle in G*. 0
(Of course, (hy,G,) < (hy, G;) holds iff (h;', G,) < (h{', G,); however,
(hy, Gy) & (hy, G,) does not imply (h,, G,) » (hy, Gy).)

Corollary 4. If G,, G, form a non-trivial separation of a connected graph G with
V(G,) n V(G,) = {z} for some z € V(G), and if there exists a Hamiltonian cycle h
in G?, then there are paths'h, and h, in G, and G ,, respectively, satisfying (hy, G,)
= (hy, Gy) or (hy, Gy) v (hy, Gy) or (hy, Gy) < (h'z_, G,).

Corollary 4 can be easily proved by considering the maximal G;-sections and
the maximal G,-sections of h. ' |

Note that the block-cutpoint-graph bc(G) of a connected graph G with |V(G)| = 2
is a tree and that its endvertices (i.e. vertices of valency < 1) in every case are
representing some (maximal) blocks of G. (If G is a block then bc(G) is a one-
vertex-tree, and this vertex is also considered to be an endvertex of bc(G).) We
define be(G) := & if |V(G)] £ 1.

Theorem 3. Let G be a connected graph with |V(G)| = 3 satisfying the property
that G* is Hamiltonian. Suppose that bc(G) has at least one endvertex representing
a non-trivial (maximal) block of G. Then there is a Hamiltonian cycle in G* containing
some edge [l € E(G).

Proof: If G is a block then we only need apply Theorem 2 to G.

If G is not a block consider an endvertex of bc(G) representing a non-trivial
block G, of G, and let z be the cutpoint of G belonging to G,. Then G, and G, :=

- (V(Gy) - {z}) = G(V(G) — V(G,)) v {z}) form a non-trivial separation
of G with ¥(G,) n V(G,) = {z}, and Corollary 4 implies the existence of some h,, h,
such that (h,, G,) v (h,, Gy)V (h,, G,) » (h,, G) V (hy, G,) < (h,, G;) holds
Because G, is a non-trivial block according to Theorem 2 there is a Hamiltonian
path h; in G2 — z joining two G,-neighbours (i.e. G-neighbours) of z and contain-
ing an edge / e E(G,).

If (hl’ Gl) g (hz, Gz) then ((z’ h;), Gl) « ((Z, h2)9 Gz)s and (2, h;) v (Z! hz) is
a Hamiltonian cycle in G* containing / € E(G). If (h,, G,) + (hy, G,) then (h,,G;) +
# (h1, G1), and h, + h, is a Hamiltonian cycle in G? containing / € E(G).

71



G. SCHAAR

If (hy, G,) © (h3, G,) then ((z, 11), Gy <> (h,, G,), and (z, hy) U h, is a Hamilto-
nian cycle in G? containing / € E(g). O

For a connected graph G with | V(G) | = 3 we form G := G — V,(G), where
Vi(G) := {x e V(G): v(x : G) = 1}. Then it is easy to show

Corollary 5. Let G be a connected graph with | V(G) | = 3 satisfying the property
that G* is Hamiltonian. Suppose that all endvertices of bc(G) are representing trivial
(maximal) blocks of G. If be(G) =8, or if be(G'Y)) has an endvertex representing
a trivial (maximal) block of G') then there is a Hamiltonian cycle in G* containin
an edge | € E(G). . O

Now it remains the case that all endvertices of bc(G) are representing trivial (maximal) blocks
of G and all endvertices of bc(GV) are representing non-tiivial (maximal) blocks of GD. It is
rather obvious that this problem could be solved if the following statement were true.

Conjecture: For every connected graph G with | ¥(G)| = 3 fulfilling (14) and every vertex
x € V(GM) with t(x : GV) = v(x : G) the existence of a Hamiltonian path in G2 — x joining
two G-neighbours of x implies the existence of a Hamiltonian path in G*> — x joining two suitable
G-neighbours of x and containing some edge of G.

(14) GV is a non-trivial block A for any different vertices x, y € V1(G) their G-neighbours are
different (i.e. N(x : G) # N(y : G)).

We remark that this Conjecture holds in case that | VI(G) | = 1 because of Theorem 2.
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