[1] E. Asplund:
Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-47.
MR 0231199 |
Zbl 0162.17501
[2] E. Asplund R. T. Rockafellar:
Gradients of convex functions. Tгans. Ameг. Math. Soc. 139 (1969), 443-467
MR 0240621
[3] E. Bishop R. R. Phelps:
A pгoof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97-98
MR 0123174
[4] R. D. Bourgin:
Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics, Vol. 993, Springer-Verlag .
MR 0704815 |
Zbl 0512.46017
[5] A. Brøndsted R. T. Rockafellar:
On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. 16 (1965), 605-611.
MR 0178103
[6] J. P. R. Christensen:
Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings. Proc. Amer. Math. Soc. 86 (1982), 649-655.
MR 0674099
[7] J. P. R. Christensen P. S. Kendeгov:
Dense strong continuity of mappings and the Radon-Nikodým property. Math. Scand. 54 (1984), 70-78.
MR 0753064
[8] J. B. Collieг:
The dual of a space with the Radon-Nikodým property. Pacific J. Math. 64 (1976), 103-106.
MR 0425580
[9] S. Fitzpatrick:
Monotone operatoгs and dentability. Bull. Austral. Math. Soc. 18 (1978), 77-82.
MR 0482395
[10] S. Fitzpatгick: Separately related sets and the Radon-Nikodým property. Illinois J. Math. 29 (1985), 229-247.
[11] J. R. Giles:
On the characterization of Asplund spaces. J. Austral. Math. Soc. (Series A) 32 (1982), 134-144.
MR 0643437
[12] J. R. Giles:
Convex Analysis with Aplication in Differentiation of Convex Functions. Pitman, London, 1982
MR 0650456
[13] L. Hörmander:
Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Arkiv für Math. 3 (1954), 181-186.
MR 0068112
[14] A. D. Ioffe V. M. Tihomirov:
Theory of Extremal Problems. North Holland, Amsterdam, 1979.
MR 0528295
[15] L. Jokl: Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces). CSc - thesis, Prague 1985.
[16] L. Jokl: Upper semicontinuous compact valued correspondences and Asplund spaces. to appear.
[17] L. Jokl:
Convex-velued weak * usco correspondences. Comment. Math. Univ. Carolinae, 28, 1 (1987).
MR 0904760
[18] P. S. Kenderov:
Semi-continuity of set-valued monotone mappings. Fundamenta Mathematicae, LXXXVIII (1975), 61-69.
MR 0380723 |
Zbl 0307.47049
[19] P. S. Kenderov:
Multivalued monotone mappings are almost everywhere single-valued. Studia Mathematica, T. LVI. (1976), 199-203.
MR 0428122 |
Zbl 0341.47036
[20] P. S. Kenderov:
Monotone operators in Asplund spaces. C. R. Acad. Sci. Bulgare 30 (1977), 963-964.
MR 0463981 |
Zbl 0377.47036
[21] P. S. Kenderov:
Most of the optimization problems have unique solution. International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216.
MR 0882205 |
Zbl 0541.49006
[22] J. J. Moreau:
Semi-continuity du sous-gradient d'une fonctionelle. C. R. Paris 260 (1965), 1067-1070.
MR 0173936
[23] I. Namioka R. R. Phelps:
Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), 735-750.
MR 0390721
[24] R. R. Phelps:
Dentability and extreme points in Banach spaces. J. Functional Anal. 17 (1974), 78-90.
MR 0352941 |
Zbl 0287.46026
[25] R. R. Phelps: Differentiability of Convex Functions on Banach Spaces. Lecture Notes, University London 1978.
[26] C. Stegall:
Gâteaux differentiation of functions on a certain class of Banach spaces. Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45.
MR 0761371 |
Zbl 0548.46037
[27] C. Stegall:
More Gâteaux differentiability spaces, Banach Spaces. Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985.
MR 0827772