Previous |  Up |  Next

Article

References:
[1] E. Asplund: Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-47. MR 0231199 | Zbl 0162.17501
[2] E. Asplund R. T. Rockafellar: Gradients of convex functions. Tгans. Ameг. Math. Soc. 139 (1969), 443-467 MR 0240621
[3] E. Bishop R. R. Phelps: A pгoof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97-98 MR 0123174
[4] R. D. Bourgin: Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics, Vol. 993, Springer-Verlag . MR 0704815 | Zbl 0512.46017
[5] A. Brøndsted R. T. Rockafellar: On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. 16 (1965), 605-611. MR 0178103
[6] J. P. R. Christensen: Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set valued mappings. Proc. Amer. Math. Soc. 86 (1982), 649-655. MR 0674099
[7] J. P. R. Christensen P. S. Kendeгov: Dense strong continuity of mappings and the Radon-Nikodým property. Math. Scand. 54 (1984), 70-78. MR 0753064
[8] J. B. Collieг: The dual of a space with the Radon-Nikodým property. Pacific J. Math. 64 (1976), 103-106. MR 0425580
[9] S. Fitzpatrick: Monotone operatoгs and dentability. Bull. Austral. Math. Soc. 18 (1978), 77-82. MR 0482395
[10] S. Fitzpatгick: Separately related sets and the Radon-Nikodým property. Illinois J. Math. 29 (1985), 229-247.
[11] J. R. Giles: On the characterization of Asplund spaces. J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. MR 0643437
[12] J. R. Giles: Convex Analysis with Aplication in Differentiation of Convex Functions. Pitman, London, 1982 MR 0650456
[13] L. Hörmander: Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Arkiv für Math. 3 (1954), 181-186. MR 0068112
[14] A. D. Ioffe V. M. Tihomirov: Theory of Extremal Problems. North Holland, Amsterdam, 1979. MR 0528295
[15] L. Jokl: Některé aspekty konvexni analyzy a teorie Asplundových prostorů (Some aspects of convex analysis and the theory of Asplund spaces). CSc - thesis, Prague 1985.
[16] L. Jokl: Upper semicontinuous compact valued correspondences and Asplund spaces. to appear.
[17] L. Jokl: Convex-velued weak * usco correspondences. Comment. Math. Univ. Carolinae, 28, 1 (1987). MR 0904760
[18] P. S. Kenderov: Semi-continuity of set-valued monotone mappings. Fundamenta Mathematicae, LXXXVIII (1975), 61-69. MR 0380723 | Zbl 0307.47049
[19] P. S. Kenderov: Multivalued monotone mappings are almost everywhere single-valued. Studia Mathematica, T. LVI. (1976), 199-203. MR 0428122 | Zbl 0341.47036
[20] P. S. Kenderov: Monotone operators in Asplund spaces. C. R. Acad. Sci. Bulgare 30 (1977), 963-964. MR 0463981 | Zbl 0377.47036
[21] P. S. Kenderov: Most of the optimization problems have unique solution. International Series of Numerical Mathematics. Vol. 72, 1984, Birkhauser Verlag Basel, 203-216. MR 0882205 | Zbl 0541.49006
[22] J. J. Moreau: Semi-continuity du sous-gradient d'une fonctionelle. C. R. Paris 260 (1965), 1067-1070. MR 0173936
[23] I. Namioka R. R. Phelps: Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), 735-750. MR 0390721
[24] R. R. Phelps: Dentability and extreme points in Banach spaces. J. Functional Anal. 17 (1974), 78-90. MR 0352941 | Zbl 0287.46026
[25] R. R. Phelps: Differentiability of Convex Functions on Banach Spaces. Lecture Notes, University London 1978.
[26] C. Stegall: Gâteaux differentiation of functions on a certain class of Banach spaces. Funct. Anal. Surveys and Recent Results, Amsterdam 1984, 35-45. MR 0761371 | Zbl 0548.46037
[27] C. Stegall: More Gâteaux differentiability spaces, Banach Spaces. Proceedings, Missouri 1984, Lecture Notes in Mathematics, Vol. 1166, Berlin 1985. MR 0827772
Partner of
EuDML logo