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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

2 8 , 2 ( 1 9 8 7 ) 

MINIMAL CONVEX-VALUED WEAK* USCO CORRESPONDENCES AND 

THE RADON-NIKODÝM PROPERTY 

Luděk JQKL 

Abstract; We show that the minimal convex-valued weak* usco 
correspondences form a suitable generalization of maximal 
monotone operators. Using these correspondences, we develop 
Fitzpatrick's result about generic continuity of monotone 
operators and characterize closed convex sets with the Radon-
-Nikod^m property. 

Key words: Asplund space, Baire space, Banach space, convex 
analysis, convex function, maximal monotone operator, minimal 
convex-valued weak* usco correspondence, strongly weak* ex­
posed point, subdifferential map, support function, sublinear 
functional, weak* dentable set. 

Classification: 46B20, 46B22 

0. Introduction 

The minimal convex valued weak* usco correspondences have 
been introduced in [16] to prove that a Banach space is in the 
Stegall class if [ 27 J whenever there is a weak * lower semi-
continuous rotund function on its dual. In the present paper 
we use these correspondences to develop the following theorem 
due to S. Fitzpatrick. 

0.1. Theorem [9 ] • Let X be a real Banach space and let K be 
a closed linear subspace of the dual Banach space X* such that 
every bounded subset of K is weak* dentable. Let T be a monotone 
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operator on X and D be an open subset of X. If Tx /- 0 for x 

in D and KfiTx / 0 for x in a dense subset of D, then T is 

single-valued and norm to norm upper semicontinuous at each 

point of a dense G~ subset of D. 

Basic properties of minimal convex-valued weak* usco 

correspondences are given in Section 1. Their connection with 

convex analysis is described in Section 2. Main results are 

contained in Section 3. Closed convex sets with the Radon-Ni-

kod̂ m̂ property are characterized in Section 4 (Corollary 4.4). 

Here a closed convex subset K of a Banach space is said 

to have the Radon-Nikod^m property (abbreviated RNP) if every 

closed convex bounded subset of K is the closed convex hull 

of its strongly exposed points [4 ] . 

Theorems 2.11, 3.5 and 3.15 form a skeleton of the present 

paper. 

Theorem 2.11 is suggested by the works of P. S. Kenderov 

[2o] and J. P. R. Christensen and P. S. Kenderov [7] . 

Theorem 3.5 generalizes Theorem 0.1 on account of Theorem 

2.1 and the "three convex sets lemma" [25, Lemma 2.2] ,[ 4, Thm. 

4.3.1 (w*) ] . 

Theorem 3.15 is suggested by the works [ 3 ] , [23], [24] , 

[ 8 ] , [25] due to E. Bishop, I. Namioka, R. R. Phelps and J. B. 

Collier. Many results of these worka are analysed in Giles* 

book [12] . 
Theorem 2.1 and Corollary 4.4 have been preliminarily 

communicated in [ 17 ] . 

1# Weak * convex-valued usco correspondences 

Throughout the paper it will be assumed that D and Y are 

topological spaces. In applications D will be a Baire space 

(i. e. every open nonempty subset of D is of the second Baire 

category) and Y will be of the form (X*, w*), where X*is 

a dual Banach space and w* is its weak* topology. 
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We define the sett m(D, Y) writing Fem(D, Y) if and only 

if F is a set-valued correspondence assigning a nonempty subset 

F(d) of Y to each point deD. The set m(D, Y) will be considered 

as a partially ordered set with order £ , defining, for 

E, Fem(D, Y), E ^ F if and only if E(d) CZ F(d) holds whenever 
di£D. For F€m(D, Y), G C D a n d M C Y we put 

F(G) : = |J{F(d) : d€ Gi} , 

(1) F"1(M) : = {d€D : MOF(d) f 0 } . 

According to [7 ] we denote by USCO(D, Y) the set of all usco 

correspondences [ 7 ] from D into Y, therefore, F£USCO(D, Y) 

if and only if F€m(D, Y) and F is an upper semicontinuous 

c ompac t-valued c orrespondenc e. 

We define usco(D, Y) to be the set of all minimal elements 

(relative to order ̂  ) of the set USCO(D, Y). Minimal usco 

correspondences have been used, for instance, in [6 ] , [ 7 ] , 

[21] , [26], [27] and [16] . 

1.1. Theorem [7] . Let Y be a Hausdorff space and F be in 

USCO(D, Y) • Then there exists a correspondence E£usco(D, Y) 

having the property E ^ F. 

Minimal usco correspondences can be characterized by the 

following way. 

1.2. Theorem [16] . Let Y be a Hausdorff space and F be in 

USCO(D, Y). Then the following conditions are equivalent, 

(i) F€usco(D, Y). 

(ii) The implication GCF""1(M) => F(G) C M is satisfied 

whenever G is an open subset of D and M is a closed sub­

set of Y. 

(iii) For every pair [ G, V ] , where G is open in D, V is open 

in Y and WOF(G) f 0, there exists an open set U with 
the properties 
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0 ^ U C O , F(U)d V . 

In what follows it will be considered a real Banach space 

X r* {0} . We denote by X the corresponding dual Banach space 

and by w* the weak* topology for the set X • 

For any set M C X* we write 1, H* and co* M for the norm 

closure, weak* closure and weak* closed convex hull of the set 

M, respectively. 

1.3* Definition [16 J• The weak* convexification of a correspon­

dence Fcm(D, X*) is the correspondence co Fem(Df X*) defined 

by the formula 

(co F)(d) : = co*F(d) whenever d€D . 

1.4. Proposition f 16 1 . F£USCO(D, (X*, w*)) => co FeUSCO(D, (X*,w*)). 

Accordingly to [16 3 we define 

USCOC(Df (X*,w*)) : = { F€ USCO(Df (X*fw*)) : co F = F } . 

Thus, FGUSCOC(D,(X*,w*)) holds if and only if, using the weak* 

topology, F is a convex-valued usco correspondence from D into 

X*. 

We denote by uscoc(D, (X*,w*)) the set of all minimal 

elements (relative to order =" ) of the set USCOC(D,(X*,w*)). 

1.5* Theorem [16 j . Let F be in USCOC(D, (X*fw*)). Then there 

exists a correspondence E6 uscoc(D,(X*,w*)) with the property 

E = F. 

There is a characterization of the set uscoc(Df(X ,w )) 

similar to Theorem 1.2. 

1.6. Theorem f 16 1 . Let F be in USCOC(D, (X*,w*)). Then the 

following conditions are equivalent. 
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(i) Feuscoc(D,(X*,w*)). 

(ii) The implication G C F~X(M) =-> F(G) d M is satisfied 

whenever G is an open subset of D and M is a weak* closed 

convex subset of X . 

(iii) For every pair [G, M ] , where G is an open subset of D, 

M is a weak* closed convex subset of X and 

F(G)f) (X*\M) j* 0, there exists an open set U with 

the properties 

0 f U CZ G, F(U) d X * \ M . 

(iv) For every pair [ G, HJ , where G is an open subset of D, 

H is a weak* open half space in X* and F(G)HH / 0, there 

exists an open set U with the properties 

( 3 / U C G , F(U) C.H . 

1.7. Corollary \ 16 1 . F€ usco(D, (X*,w*)) :==> co F euscoc(D, (X*,w*)). 

1.7'. Corollary \ 16 \ . If E e usco(D, (X*,w*)), Feuscoc(D, (X*,w*)) 
and E - F, then co E = F. 

Theorem 1.1 and Corollaries 1.7 and 1.7* tell us that the 

weak* convexification maps the set usco(D,(X ,w*)) onto the 

set uscoc(D,(X*,w*)). 

1.8. Corollary [ 7 J . Let D be a Baire space and F be in 

usco(D,(X*,w*)). Then the correspondence F is openly locally 

bounded on D, that is, for every open nonempty subset G of D 

there is an open nonempty subset U of G such that the set 

F(U) is bounded. 

1.8 . Corollary. Let D be a Baire space and F be in 

uscoc(D,(X*,w*)). Then the correspondence F is openly 

bounded on D. 

Proof. Following the idea due to J. P. R. Christensen 
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and P. S. Kenderov [ 7 J, we take in consideration an open 

nonempty set G C D and the corresponding dual unit ball B of 

X* (being a weak* compact barrel in X* ). As 

X* - (J {n B : n = 1, 2, ... } , we have 

0 = Gf.D= G H F"
X
CX*) = 0(1 F"

i
( \J n B) = 

= Џ (0П ғ""
1
^ в)). 

n=l 

n=l 

The set G endowed with the relativized topology is a Baire space 

and each set G f. F (n B) is closed in G. Therefore there are 

an open set U and a natural number n with 0 / U C Q f\F (n B). 

We have 0 / U C Q a n d U C F""
1
^ B). It follows F(U) c n B by 

virtue of Condition (ii) of Theorem 1.6. 

We note that Corollary 1.8, too, is a consequence of 

Corollary 1.8
#
 on account of Corollary 1.7. 

1.9* Definition. Let F be in m(D, X*). Then the set C(F, D, X*) 

is defined as follows : deC(F, D, X*) if and only if d€D 

and, using the norm topology of X*, F is upper semicontinuous 

and single-valued at d. 

1.10. Proposition. Suppose F€ mCD, X*) and d€D. Then 

deC(F, D, X*) if and only if there exists an x* e X* such 

that for every norm neighbourhood V of the point OCX* there 

exists an open set 0 C D with the properties deG and 

F(G)C x* + V. 

In what follows we fix a countable local basis V" for 
jJL jit 

the norm topology of X formed by weakm closed absolutely 

convex sets. For instance, it can be supposed 

V* = {n - 1 B : n = 1, 2, ... } , 

i B is the dual unit ball in X*. 

The complete proof of the following technical lemma 
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is given in [16 ] . 

1.11. Lemma. Let Fem(D, X*) and G(F, V ) : = ( J { G C : D : G i 8 

open and F(G) - F(G>c: V } for each Ve ^ . Then 

C(F, D, X*) * 0 {G(F, V) 2 V e V~ } . 

1.12. Remark. As every set G(F, V) is open and U is a countable 
family, the set C(F, Df X*) always is a G,. subset of D. 

The following corollary can be regarded as a method to 

prove that C(F, D, X*) is a dense G« subset of D. 

1.13> Corollary. Let D be a Baire space and let F be in 

m(D, X*). If for every pair^G, VJ, where G is an open 

nonempty subset of D and V e &*", there exists an open set U 

with the properties fb t U O G and F(U) - F(U)CLV, then 
C(F, D, X*) is a dense G~ subset of D. 

Proof. If G is an arbitrary open nonempty subset of D and 

V e ty% then, by hypothesis, the open set G(F, V) meets G 

and hence G(F, V) is dense in D. Applying Baire Category 

Theorem and Lemma 1.11., we obtain the required result. 

1.14* Proposition [l6 1 . Let F be in usco(D,(X*, w*)) (or in 

uscoc(D,(X*, w*))), E be in m(D, X*) and E = F. Then 

C(E, D, X*) = C(F, D, X*). 

Proof, Since the inclusion CCF, D, X*) C:C(E, D, X*) is 

obvious, it suffices to prove the converse. Let 

d£C(E, D, X*), Vel^and x*e E(d). Then there is an open 

set Q C D with d€G and E(G) e x* + V. As E = F, it follows 

GO. F-1(E('G)) C F"1(x* + V). 

Now Condition (ii) of Theorem 1.2 (or Theorem 1.6) tells us 

that F(G) d x* + V. Hence d€C(F, D, X*), by Proposition 1.10. 
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2. Connection with convex analysis 

Let f : X—*•! be a convex function. The subdifferential 

map 9f : X—*X* is defined by setting «9f(x) : = 0 if 

f(x)$ R and 

#f(x) : = Q { { x * £ X * : < h , x*> « f(x + h) - f(x) } : h e x } 

A, 
if f(x)e R. Here <.,. > denotes the pairing between X and X . 

If f (x)e R and e > 0 then the e - subdifferential 9 f (x) 

of f at the point xeX is defined by 

9ef(x) : = f]{ {x*eX* : <h, x*> = f(x + h) - f(x) + e } : h e x } , 

If the function f is finite and continuous on an open set D C X 

then, according to Moreau's result [22 ] , the restriction 

df | D of the subdifferential map 9f to the set D belongs to 

USCOC(D,(X*,w*)). Now, using monotonicity of subdifferential 

maps and applying Kenderov's result [ 20 ] (for itt, see the proof 

of Theorem 1.28 of [25 ] t too), we see that the correspondence 

*d f | D satisfies Condition (iv) of Theorem 1.6. 
Similarly, let us consider a maximal monotone operator 

T : X—>X* having the property that Tx / j3 for any x in an 
open set D C X . Then, accordingly to Kenderov'e results [18] , 

[20 J , the restriction T I D of T to D belongs to 

USC0C(D,(X*,w*)) and satisfies Condition (iv) of Theorem 1.6 

as well. Therefore it holds the following 

2.1. Theorem. Let D be an open subset of X, f : X—1>"5 be 

a convex function finite and continuous on D and let 

T : X —*-X be a maximal monotone operator such that Tx / 0 

whenever x e D. Then both correspondences df \ D and T |D 
belong to uscoc(D,(X*,w*)). 

Let {M^.: / e (Tt - )} be a net of nonempty subsets 

of the dual Banach space X*and x* e X* . Then we write 
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lim M. = x* 
feV * 

if and only if for every V € V (see Section 1) there is a *)*-
in r with U{M^: f 0 = ^ r } c x * + V . 

2.2. Theorem £2 ] , [ll] • Let f : X—i*"R be a convex function 

finite and continuous on an open set D C X , x e X and x* € X . 
* o o 

Then the following conditions are equivalent. 

(i) The Fr£chet derivative f*(x0) of f at xQ is x* . 

Cii) l im 9C f (x ) =- x * . 

( i i i ) x 0 £ C C S f I Q, D, X*) and x * e 9 f ( x Q ) . 
( i v ) There e x i s t s a correspondence F e i ( D , X*) such that 

F = 9 f I D, x 0 € C(F, D, X*) and x * € F (x Q ) . 

2.3. Remark. The equivalences (i)Cz--> (ii) C=> (iii) are due 

to E. Asplund and R. T. Rockafellar [2 ] and the implication 

(iv)=--->(i) is due to J. R. Giles [ll] . The implication 

(iv) —>(iii) follows from Theorem 2.1 and Proposition 1.14. 

Let p : X—*R be a sublinear functional. It is a well-

-known fact [14] that, at any pointi x€X, it holds 

(2) ©p(x) ={x*e6>p(0) : < x, x*> « p(x) } . 

This relation can be modified as follows. 

2.4. Proposition [16 ] . Let p : X—*R be a sublinear functional-

Then for every pair £ £ , x ] , where £ > 0 and x£X, it 

holds 

3£p(x)> = £x*£o>p(0) : < x, x* > = p(x) - & } . 

If x€X and M C X * , then, f ollowing [ 14 ] , we set 
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s(x I M) : * sup { <x, x*> : x* € M } . 

The function p defined on X by the formula 

p(x) : = s(x | M) whenever x c X 

is called the support function of the set M. 

The next theorem catalogizes some well-known facts about 

continuous sublinear functionals and support functions £l3 !• 

2.5. Theorem. Let p : X—*R be a continuous sublinear 

functional and M be a bounded nonempty subset of X* . Then 

(i) s(. I M) is a continuous sublinear functional on X, 

(ii) p -= s(. I 3>p(0)) and 

(iii) p = s(. 1 M) z > c o * M = #p(0). 

2.6. Definition [23 ] • Let M be a bounded nonempty subset of 

X* , 0 / x£X, ct > 0 and let p : X—*R be the support function 

of the set M. Then the weak* slice of the set M determined by 

x and 00 is the set 

S(M, x, a) : ={x*eM : < x, x*> >p(x) - a } . 

In the proof of the following lemma we shall apply the 

well-known inclusion 

H 0 G C M n G 

satisfied for any M C Y and any open G (Z Y. 

2.7* Lemma. Let M be a convex bounded nonempty subset of X* , 

O ^ x e X , 0 < £ < Q t > and let p : X—>R be the support 

function of M. Then 

3>p(x)c S(M, x, co ) * d 9p(x). 
o CC 

Proof. Define 
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Hct * * { * * € X * : < x t x * > > PM - <* } , 

H* : ={ x*€ X* : < x, x * > ^ p(x) - € } . 

According to Proposition 2.4 and Theorem 2.5 we have 

3 £p(x) = 9 p ( 0 ) 0 H6 = I * H H£ O 1 * 0 H ^ C 
if 

c M n H *̂ = S(M, x, cc )* c 1* a B* = 

= SP(6) a tt**= 9P(0) 0 Ha'= %P(X). 

In [23] I* Namioka and R. R. Phelps gave the definition 

of strongly weak* exposed points for weak* compact convex subsets 

of dual Banach spaces. This definition can be slightly extended 

as follows. 

2.8. Definition. Let M be a convex bounded nonempty subset 

of X* , 0 / xcX and x * € X * . Then the element x strongly 

exposes the set M at x* if and only if it holds 

lim S(M, x, a/ ) = x* . 
ooio 

A point x*e X is said to be a strongly weak* exposed point 

of the set M provided that there is an element 0 f xeX 

strongly exposing the set M at x *. 

2.9» Proposition. Let M be a convex bounded nonempty subset 

of X* , 0 f xeX, x* e X*and let p : X-—>R be the support 
function of the set M. Then the element x strongly exposes 

the set M at the point x* if and only if p'(x) = x* . 

Further, every strongly weak* exposed point of M belongs to 

Proof. Consider the following relations: 

(i) lim S(M, x, oc ) -= x* , 

ajo 
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(ii) lim S(M, x, ex ) * = x* , 

(iii) lim d p(x) = x* and 
6*0 e 

(iv) p'(x) = x* . 

As the family V consists of weak* closed subsets, (i) is 

equivalent to (ii). the equivalences (ii)< > (iii) and 

(iii) <i_-iJ>(iv) follow from Lemma 2.7 and Theorem 2*29 

respectively. Further it follows from (i) that x*€ H. 

2.10. Lemma. Let M be a convex bounded nonempty subset of X* , 

E be the set of all strongly weak* exposed points of M 

and let p : X—*R be the support function of M. Then 

{ XB X : x / 0 and p '(x) e x i s t s } C J x e X : p(x) = s ( x | E ) } 

Proof. Suppose that 0 f x e X and p '(x) e x i s t s . Then p ' ( x ) c E 
and p '(x) e 9p (x) by Theorem 2.2. As E c l c B * a n d 
s ( . l l * ) = p, i t follows from (2) that 

p(x) = < x, p '(x) > = s(x | E) = s(x | 1*) = p(x) . 

We close this section by the theorem proved firstly in 

[ 15 ] for subdifferential maps of continuous convex functions. 

2*11. Theorem. Let F be in usco(D,(X*,w*)) (or in 

uscoc(D,(X*,w*)), Q be an open nonempty subset of D such that 

the set F(G) is bounded and let p : X—•*R be the support 

function of the set F(G). Then for every pair £ e » h3 , 

where £ > 0 and 0 / h € X, there exists an open set U such 

that 

J J / U C G , F(U) c: »p(h) . 
o 

Proof . Consider ,e>0, 0 / hex and define 

H : = { x*e X*: < h, x* > > p(h) - £ } . 
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Since F(G) 0 H,/ 0» there ia an open aet U aa t ia fy ing 

0 / U C G , F(U) OF (G) 0 H£ 

on account of Condition (iii) of Theorem 1.2 (or Condition 
(iv) of Theorem 1.6). It followa from Theorem 2.5 and Propo­
sition 2.4 that 

F ( G > n H c c 3 p ( 0 ) f i H x C 3> P(h) . 

j . Main result 

In the present section we assume that K is a subset of 
the dual Banach space X . 

3>1. Remark. According to ( 1) the following conditions are 
equivalent for any correspondence Fem(D, X* ). 
(i) The set F"1(K) is dense in D. 
(ii) F(U) O K f 0 whenever U is an open nonempty subset of 

D. 
(iii) There is a dense subset A of D satisfying 

F(d) 0 K ?- 0 whenever deA. 

We recall that the family V^ is a local basis for the 
norm topology of the dual Banach space X*and it consists 
of weak* closed absolutely convex sets. 

3*2. Definition. We say that a continuous sublinear functional 
p : X —»*R has arbitrarily small approximative subdifferentials 
provided that for each V £ ty there is a pair [ £ , h] such 
that e > 0 , 0 f h € X and S p ( h ) - 9 p(h) C V. 

o £• 
3*3* Definition. We say that a continuous sublinear functional 
p : X —»*R is K - lower aemicontinuoua (K - 1. a. c.) on X if 
there exi8t8 a subset M of the set K auch that p = a(. I M). 
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3.4. Lemma. Suppose 

(i) F€usco(D, (X*,w*)) or Fc uscoc(D, (X*,w*)), 

(ii) F""1(K) is dense in D, 

(iii) G is an open nonempty subset of D and 

(iv) the set F(G) is hounded. 

Then the support function p : X—*R of the set F(G) is 

K - lower semicontinuous on X. 

Proof. Fix 0 / hex. It suffices to prove 

p(h) - e * s(h| K H F(G)) whenever e > 0. 

Fix e :>0. According to Theorem 2.11 there is an open set U 

such that 0 / U C G and 

(3) F(U) C $> p(h) . 

According to Remark 3.1 there exists an x* in K 0 F(U). Using 

(3) and Proposition 2.4, we obtain 

p(h) - e = < h, x*> = s(h I K O F(U)) = s(h| K O F(G)) . 

3«5« Theorem. Let D be a Baire space, F be in usco(D,(X ,w )) 

or in uscoc(D,(X*,w*)) and let us suppose 

(i) the set F (K) is dense in D and 

(ii) every continuous sublinear functional p : X—*R being 

K - lower semicontinuous on X has arbitrarily small 

approximative subdifferentials. 

Then C(F, D, X*) is a dense G^ subset of D. 

Proof. Let G be an open nonempty subset of D and V e It . 
According to Corollary 1.13 it suffices to find an open set 

U with the properties 

C4) 0 / U CG, F(U) - F(U) O V . 
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According to Corollary 1.8 or 1.8' there is an open set Q 

such that 0 t Q C Q and the set F(Q) is bounded. Now let us 

set p : = s(. I F(Q)). It follows from (i), Lemma 3.4 and 

Theorem 2.5 that p is a continuous sublinear functional being 

K - l . s. c. onX. It follows from (ii) that there is a pair 

[ e i *0 such that £ > 0, 0 •* h € X and 

(5) ^p(h) - 9ep(h)C V . 

Theorem 2.11 tells us that there is an open set U such that 

0 f U OGtand F(U) C 
set U satisfies (4). 

0 f U OGtand F(U) CZ <?£p(h). It follows from (5) that the 

3.6. Lemma. Let p : X—*R be a continuous sublinear functional. 

Then p is K - lower semicontinuous on X if and only if 

(6) p = s(. | K 0 o>p(0)) . 

Proof. (6) implies that p is K - 1. s. c. on X. Conversely, 

if p = s(.I M) and M C K, then, according to Theorem 2.5f 
M C K O ^p(O) and 

p = s(. 1 M) = s(. 1 K 0 9p(0)) = s(. | 9p(0)) = p . 

3.7. Lemma. Let p : X->Rbe a continuous sublinear functional 

such that the set ( S>p) (K) is dense in X. Then p is K - lower 

semicontinuous on X. 

Proof. According to Remark 3.1 there is a dense subset A of X 

such that for each xeA there is a n x * 6 K 0 Sp(x). According 

to (2) we have x*e K O 9p(0) and < x, x* > «- p(x). This 

means that the continuous functionals p and s(. | K H 9 p(0)) 

coincide on the dense set A; therefore they coincide on X 

everywhere. According to Lemma 3.6 p is K - 1. s. c. onX. 

3.8. Lemma. Let Fcm(D, X*), deC(F, D, X*) and x*€F(d). 
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If the set F-1(K) is dense in D, then x * e L 

Proof. Every norm neighbourhood of x* contains a point of K. 

3»9« Definition [23 3• A bounded nonempty subset M of X* is 

said to be weak* dentable provided that for each V e if" there 

exists a pair £ CO , x ] such that cc >0, 0 / x€X and 

S(M, x, a/ ) - S(M, x, ot> ) C V. 

3.10. Lemma. Let K be a convex subset of X* . If every bounded 

nonempty subset of K is weak * dentable then every continuous 

sublinear functional p : X—»-R being K - lower semicontinuous 

on X has arbitrarily small approximative subdifferentials. 

Proof. Let V £ 2^ • Suppose p : X—**R is a continuous sublinear 

functional having the property 

p = s(. IK O 3p(0)) 

and take in consideration Lemma 3.6. The set M : = K O 3p(0) 

is a convex bounded nonempty subset of K and p = s(. | M). If 

every bounded nonempty subset of K is weak* dentable, then there 

is a pair [ot>, x ] such that cc/>0, 0 f xeX and 

S(M, x, ou ) - S(M, x, CO ) d V . 

As V is a weak* closed absolutely convex set, it holds 

S(k, x, o/J*- S(M, x, au)*CL V . 

Choose an £ such that 0 < 6 < ou . Lemma 2.7 tells us that 

9. p(x) CZ S(M, x, cc/I* and hence 9cp(x) - dc p(x) C V. 
o o c* 

To convert Lemma 3«7, we firstly recall one result due 

to E. Bishop and R. R. Phelps. 

2«11« Theorem [3 3 # ket M D© a closed convex bounded nonempty 
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subset of X. Then there exists a dense subset A of X such 

that for each x*e A there is an xeM with the property 

<x, x*> = sup $<z, x* > : z€M } . 

In what follows we shall assume that K is a closed 

convex subset of X . We denote by w *| K the relativized 

weak* topology for the set K. 

The following definition is suggested by Theorem 3.11. 

3.12. Definition. We shall say that the set K has the 

weak* Bishop-Phelps property (w*BPP) if for every 

w* | K - closed convex bounded nonempty subset of K there 

exists a dense subset A of X such that for each x£A there 

is an x*6 X*with the properties 

(7) x*€ M, < x, x*> = sup {< x, z* > : z*e M } . 

3.13. Remark. Every weak* closed convex subset of X has 

the w*BPP. If K is a closed convex subset of a Banach 

space Z and Z* = X, then the set K regarded as a closed 

convex subset of X*has the w*BPP by virtue of Theorem 

3.11. It follows from Asplund's work £l]l that, if X is 

an Asplund space, every closed convex subset of X* has 

the w*BPP. 

3.14. Lemma. Let K have the w*BPP and let p : X—•R 

be a continuous sublinear functional. I f p i s K - 1 . s. c. 

on X then the set (®p)~ (K) is dense in X. 

Proof. Suppose p : X—*-R is a continuous sublinear functional 

having the property p = s(. I Kfi9p(0)). Then the set 

M : = KO8p(0) is a w* | K - closed convex bounded nonempty 

subset of K and p = s(. 1 M). Using (2) we see that the 

condition (7)1 can be expressed by x*G Kr\9p(x), According 

to Definition 3.10 the set 

- 369 -



{ x € X : KA9p(x) J- 0 } = Op)- 1(K) 

contains a dense subset of X. 

3*15* Theorem. Let a close63 convex subset K of the dual 

Banach space X* have the weak* Bishop-Phelps property. Then 

the following conditions are equivalent. 

(i) Every bounded nonempty subset of K is weak* dentable. 

(ii) Every continuous sublinear functional p : X—*R being 

K - lower semicontinuous on X has arbitrarily small 

approximative subdifferentials. 

(iii) The set C(F, D, X*) is a dense G^ subset of D whenever 

D is a Baire space, FG uscoc(D, (X*,w*)) and F (K) is 

dense in D. 

(iv) The set { x € D : f'(x) exists } is a dense G^ subset 

of D whenever D is an open subset of X, f : X—*>!? 

is a convex function finite and continuous on D and 

( df rXCK) is dense in D. 

(v) Every continuous sublinear functional p : X—->R being 

K - lower semicontinuous on X is Fr^chet differentiable 

on a dense subset of X. 

(vi) Every w * | K - closed convex bounded nonempty subset 

of K is the w* | K - closed convex hull of its strongly 

weak* exposed points, 

(vii) Every w * | K • closed convex bounded nonempty subset 

of K has strongly weak"* exposed points. 

Proof. The implication (i)=>(ii) follows from Lemma 3.10, 

(ii) zzr> (iii) follows from Theorem 3.5, (iii) zzz>(iv) follows 

from Theorems 2.1 and 2.2, (iv):zz>(v) follows from Lemma 3.14 and 

(vi) z=z>(vii) is obvious. Thus it remains to prove tine impli­

cations (v)zzz>(vi) and (vii) zzz> (i). 

(v) := . .>(vi): Let If be a w* | K - closed convex bounded non­
empty subset of K, E be the set of all strongly weak* exposed 
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points of the set M and p : = s(. | M). Clearly 

(8) M « K O IT* . 

It follows from (v) that the set ^x€X : x f 0, p'(x) exists} 
is dense in X and, according to Lemma 2.10, this set is con­

tained in the closed set ^ x€X : p(x) = s(x I E) }. Hence 

p = s(. I E) and co*E = 1* . Now (8) implies 

M = K O co*E . 

As E c S = M CK, the set K H co* E is the w* | K - closed 

convex hull of E. 

(vii) z=5 (i): Suppose B is a bounded nonempty subset of K 
and Ve#".*Let M : = K A co*B. Then, according to Theorem 

2.5, 

(9) s(. | M) = s(. ( B) 

and M is a w* I K - closed convex bounded nonempty subset 

of K. It follows from (vii) that there exist elements co , 

x and x * such that ot > 0, 0 / x e X , x * e X and 

(10) SCM, x, ou ) O x* + 2~X V . 

It follows from Definition 2.6 and from (9) that 

S(B, x, ou) CZ S(M, x, cx>). According to (10) we have 

S(B, x, Ou) - S(B, x, ou) C V , 

hence the set B is weak* dentable. 

4* Some applications 

In [7] J. P. R. Christensen and P. S. Kenderov proved 

that X is an Asplund space if and only if the set 
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C(Ff Df X*) is a dense G$ subset of D whenever D is a Baire 
space and Fe usco(Df (X*,w*)). Setting 

K = X* 

in Theorem 3.15 and taking in consideration the equivalence 

(iii )<==-> (iv) f we obtain the following 

4.1. Corollary. X is an Asplund space if and only if the 

set C(Ff D, X*) is a dense G* subset of D whenever D is 
a Baire space and Ft uscoc(D, (X*,w*)). 

From the corollary the above Christensen-Kenderov result 

can be derived by applying of Theorem 1.1, Corollary 1.7 

and Proposition 1.14. Further, Theorem 3.15 contains some 

characterizations of Asplund spaces which can be found in 

[23] and [ 25 ] . 

Now let us suppose that the Banach space X is of the 

form 

X = Z* f 

where Z is a Banach space. Setting K = Zf regarding K as 

a closed convex subset of X and taking in consideration 

Remark 3.13 and the equivalences (i) <=>(vi) <=>(vii), 

we have the following result due to R. R. Phelps: 

4.2. Theorem £ 24 1 . The following conditions for a Banach 

space Z are equivalent. 

(i) Every bounded nonempty subset of Z is dentable. 

(ii) Every closed convex bounded nonempty subset of Z is 

the closed convex hull of its strongly exposed points. 

(iii) Every closed convex bounded nonempty subset of Z has 

strongly exposed points. 

As the properties of Theorem 4.2 characterize Banach spaces 

with the Radon-Nikod^m property, it follows from the 
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Br^ndsted-Rockafellar theorem £5 ] that the equivalence 

(iv )<===.> (vi) of Theorem 3.15 gives Collier's characterization 
for Banach spaces with the RNP: 

4*3. Theorem [ 8 J. A Banach space Z has the Radon-Nikod^m 

property if and only if the dual Banach space Z is a weak 

Asplund space. 

Finally, taking in consideration the equivalence 

(iii)< >(vi) of Theorem 3.15, we obtain the following 

characterization for closed convex sets with the RNP. 

4.4. Corollary. A closed convex subset K of a Banach space Z 

has the Radon-Nikodym property if and only if, regarding K 

as a closed subset of the second dual Banach space Z**, the 

set CCF, D, Z**) is a dense G^ subset of D whenever D is 

a Baire space, Fe uscoc(D, (Z* * ,w*)) and the set F (K) is 

dense in D. 

We know by £4, Theorem 5.8.1 (i)3 that the Cartesian 

product X : = fl 1 X^ : 1 = i = n } of Banach spaces X. 

with the RNP has the same property. To see how the corollary 

works, we reprove this result. Thus, let D be a Baire space, 

FSuscoc(D, (X**,w*)) and let F"1(X) be dense in D. Identify­

ing X**with I"! {xf*: 1 = i = n } and taking in considers-

tion that the natural projection p^ : Xw —*xr is conti­

nuous relative to the weak* topologies, we see that the 

correspondence F^ : = pi © Fe USCOC(D, (X**,w*)) satisfies 

Condition (ii) from Theorem 1.6. Hence F^e uscoc(D,(X** ,w*)). 

As 

F ^ 1 ^ ) = F-1(P:
1(Xi))DP"

1(X) , 

the set F£ (X^) is dense in D. Hence C(Fif D, X**) is a dense 

G~ subset of D and therefore the same holds for the set 
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C(F, D, X**) = f| {c(Tif D, X**) : 1 » i = n } . 

[ 2 ] 
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