[1] BROWDER F.:
The fixed-point theory of multi-valued mappings in topological vector spaces. Mathematische Annalen 177 (1968), 283-301.
MR 0229101 |
Zbl 0176.45204
[2] FAN K.:
Some properties of convex sets related to fixed point theorems. Mathematische Annalen 266 (1984), 519-537.
MR 0735533 |
Zbl 0515.47029
[3] FLAM S.:
Abstract economies and games. Soochow Journal of Mathematics 5 (1979), 155-162.
MR 0572740
[4] GALE D., MAS-COLELL A.:
An equilibrium existence theorem for a general model without ordered preferences. Jou Journal of Mathematical Economics 2 (1975), 9-16.
MR 0381651 |
Zbl 0324.90010
[5] GRANAS A., BEN-EL-MECHAIEKH, DEGUIRE P.: Fixed points and coincidences for setvalued maps of type $\Phi $. Comptes Rendus Acad. Sc, Paris, October 1982, pp. 381-384.
[6] HADŽIĆ O.:
A coincidence theorem in topological vector spaces. Bulletin of the Australian Mathematical Society 33 (1986), 373-382.
MR 0837483
[7] HIMMELBERG C. J.:
Fixed points for compact multifunctions. Journal of Mathematical Analysis and Applications 38 (1972), 205-207.
MR 0303368
[9] MEHTA G., TARAFDAR E.:
Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar. 1985, Journal of Economic Theory (to appear).
MR 0882999 |
Zbl 0646.47036
[10] TARAFDAR E.:
On nonlinear variational inequalities. Proceedings of the American Mathematical Society 67 (1977), 95-98.
MR 0467408 |
Zbl 0369.47029
[11] TARAFDAR E., MEHTA G.: On the existence of quasi-equilibrium in a competitive economy. International Journal of Science and Engineering 1 (1984), 1-12.
[12] YANNELIS N., PRABHAKAR N.:
Existence of maximal elements and equilibria in linear topological spaces. Journal of Mathematical Economics 12 (1983), 233-245.
MR 0743037 |
Zbl 0536.90019