Previous |  Up |  Next

Article

References:
[1] BROWDER F.: The fixed-point theory of multi-valued mappings in topological vector spaces. Mathematische Annalen 177 (1968), 283-301. MR 0229101 | Zbl 0176.45204
[2] FAN K.: Some properties of convex sets related to fixed point theorems. Mathematische Annalen 266 (1984), 519-537. MR 0735533 | Zbl 0515.47029
[3] FLAM S.: Abstract economies and games. Soochow Journal of Mathematics 5 (1979), 155-162. MR 0572740
[4] GALE D., MAS-COLELL A.: An equilibrium existence theorem for a general model without ordered preferences. Jou Journal of Mathematical Economics 2 (1975), 9-16. MR 0381651 | Zbl 0324.90010
[5] GRANAS A., BEN-EL-MECHAIEKH, DEGUIRE P.: Fixed points and coincidences for setvalued maps of type $\Phi $. Comptes Rendus Acad. Sc, Paris, October 1982, pp. 381-384.
[6] HADŽIĆ O.: A coincidence theorem in topological vector spaces. Bulletin of the Australian Mathematical Society 33 (1986), 373-382. MR 0837483
[7] HIMMELBERG C. J.: Fixed points for compact multifunctions. Journal of Mathematical Analysis and Applications 38 (1972), 205-207. MR 0303368
[8] KELLEY J.: General Topology. Van Nostrand, Princeton, 1955. MR 0070144 | Zbl 0066.16604
[9] MEHTA G., TARAFDAR E.: Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar. 1985, Journal of Economic Theory (to appear). MR 0882999 | Zbl 0646.47036
[10] TARAFDAR E.: On nonlinear variational inequalities. Proceedings of the American Mathematical Society 67 (1977), 95-98. MR 0467408 | Zbl 0369.47029
[11] TARAFDAR E., MEHTA G.: On the existence of quasi-equilibrium in a competitive economy. International Journal of Science and Engineering 1 (1984), 1-12.
[12] YANNELIS N., PRABHAKAR N.: Existence of maximal elements and equilibria in linear topological spaces. Journal of Mathematical Economics 12 (1983), 233-245. MR 0743037 | Zbl 0536.90019
Partner of
EuDML logo