Previous |  Up |  Next

Article

References:
[1] R. ANANTHARAMAN T. LEVIS J. H. M. WHITFIELD: Smoothabilily, strong smoothability and dentability in Banach spaces. Canad. Math. Bull. 24 (1981), 59-68. MR 0611210
[2] N. ARONSZAJN: Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57 (1976), 147-190. MR 0425608 | Zbl 0342.46034
[3] E. ASPLUND: Fréchet differentiability of convex functions. Acta Math. 121 (1968), 31-48. MR 0231199 | Zbl 0162.17501
[4] E. ASPLUND R. J. ROCKAFFELAR: Gradients of convex functions. Trans. Amer. Math. Soc. 139 (1969), 443-467. MR 0240621
[5] J. M. BORWEIN: Weak local supportability and application to approximation. Pacific J. Math. 82 (1979), 323-338. MR 0551692
[6] J. R. CHRISTENSEN: Topology and Borel structure. Math. Studia No. 10 North-Holland, Amsterdam 1974. Zbl 0273.28001
[7] F. H. CLARK: Generalized gradients and applications. Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 0367131
[8] J. B. COLLIER: A claas of strong differentiability spaces. Proc. Amer. Math. Soc. 53 (1975), 420-422. MR 0388044
[9] J. DIESTEL: Geometry of Banach spaces. Lecture Notes in Math. No. 485, Springer-Verlag 1975. MR 0461094 | Zbl 0307.46009
[10] G. EDGAR: Meaaurability in Banach spaces. Indiana Univ. Math. J. 26 (1977), 663-677.
[11] I. EKELAND G. LEBOURG: Generic differentiability and perturbed optimization problems in Banach spaces. Trans. Amer. Math. Soc. 224 (1976), 193-216. MR 0431253
[12] R. E. HUFF P. D. MORRIS: Dual spaces with the Krein-Milman property have the Radon-Nikodym property. Proc. Amer. Math. Soc. 49 (1975), 104-108. MR 0361775
[13] KA SING LAU C. E. WEIL: Differentiability via directional derivatives. Proc. Amer. Math. Soc. 70 (1978), 11-1. MR 0486354
[14] J. KOLOMÝ: On the differentiability of operators and convex functions. Comment. Math. Univ. Carolinae 9 (1968), 441-454. MR 0238077
[15] M. K. KRASNOSELSKIJ P. P. ZABREJKO E. I. PUSTYLNIK P. E. SOBOLEVSKIJ: Integralnyje operatory v prostranstvach summirujemych funkcij. Moskva 1966.
[16] KUTATELADZE: Vypuklyje operatory. Uspechy Mat. nauk 34 (1979), 167-196.
[17] D. G. LARMAN R. R. PHELPS: Gâteaux differentiability of convex functions on Banach spaces. London Math. Soc. 20 (1979), 115-127. MR 0545208
[18] G. LEBOURG: Generic differentiability of Lipschitzian functions. Trans. Amer. Math. Soc. 256 (1979), 125-144. MR 0546911 | Zbl 0435.46031
[19] P. MANKIEWICZ: On Lipschitz mapping between Fréchet spaces. Studia Math. 41 (1972), 225-241. MR 0308724
[20] F. MIGNOT: Côntrol danse lea variationelles elliptiques. J. Functional Analysis 22 (2) (1976). MR 0423155
[21] I. NAMIOKA R. R. PHELPS: Banach spaces which are Asplund spaces. Duke Math. J.-42 (1975), 735-750. MR 0390721
[22] K. RITTER: Optimization theory in linear spaces: part III, Mathematical programming in partial ordered Banach spaces. Math. Ann. 184 (1970), 133-154. MR 0258468
[23] H. H. SCHAEFER: Banach lattices and positive operators. Springer-Verlag, New York 1974. MR 0423039 | Zbl 0296.47023
[24] M. TALAGRAND: Deux examples de fonetions convexes. C.R. Acad. Sci. AB 288, No 8 (1979), A461-A464. MR 0527697
[25] M. M. VAJNBERG: Variacionnyje metody issledovanija neline jnych operatorov. Nauka, Moskva 1956.
[26] S. YAMAMURO: Differential calculus in topological linear spaces. Lecture Notes in Mathematics No 374, Springer-Verlag, New York 1974. MR 0488118 | Zbl 0276.58001
[27] Ch. STEGALL: The duality between Asplund spaces and spaces with Radon-Nikodym property. Israel J. Math. 59 (1978), 408-412. MR 0493268
Partner of
EuDML logo