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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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GENERIC DIFFERENTIABILITY OF MAPPINGS AND CONVEX
FUNCTIONS IN BANACH AND LOCALLY CONVEX SPACES

LE VAN HOT

Abstract: Generic Fréchet-differentiability of mappings
and convex functions defined on Banach and locally convex spa—
ces is investigated. In particular, the Fréchet and GAteaux
differentiability of Hammerstein operators is also considered.

%ﬁx nnx' dg: Differentiability, mappings, convex functions
Asplund spaces, Banach and locally'convex sp;ces. ’

Classification: Primary 58C20, 58C25
Secondary 47H99

Introductiope The first important contribution to diffe-
" rentiability of convex functions has been given by Asplund [3],
He has shown that each Banach space X, which admits an equiva-
lent norm such that the corresponding dual norm in X* is local-
ly uniformly rotund is a strong differentiability space. Furt-
her conditions have been obtained also for weak differentiabi-
1lity spaces. The properties of the so called Asplund aﬁace.
have been intensively studied in [11,(5],[8],[11]1,012),0a7},
[21],(24]. For the differentiability properties of Hammerstein
and nonlinear operators, we refer the readers, for instance to
(151,1191,[25]).

First section deals with the generic Fréchet-differentia-
bility of convex functions defined on a product space X =
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= J"l"Tr,xl,,L ) where (X, : A ¢I") is a family of Asplund spaces,
and of finite convex weakly continuous functions defined on
a locally convex space. Section 2 is devoted to generic Fré-
chet-differentiability of the class of mappings acting from
a Banach space into another Banach space. In the last secti-
on we discuss generic Gateaux and Fréchet-differentiability

of Hammerstein operators.

1. Geperic Fréchet-differentigbility of convex functions
defi 1 c

Lemmg 1. Let X be a topological space and T be a subset
of X such that for each open nonempty subset G of X there ex-
ists a nonempty Gd' -gubget TGQT with the following property
Tg& int TGQ G. Then there exists a dense Gy -subset A%T.

Proof: Put W= {SST; S is a Gy -subset and SSint §},
WM =1{€<s A ; int S;nint §2 = 0 for all §),S, €€ , S;¥S,l-
We write €)X €, irf € S €,. Then " X " is a partial order
on M . It is easy to see that there exists a maximal element
& of % . Put A =U4S:S e &£% . Since every such S is a
G -subset there exists a sequence of open subsets GS ,n such
that S = ﬂ Gg p for each S & . Without loss of generali-
ty we can suppose that Gs’neints for n = 1,2,... . Put G

= U{Gs :S € £%. Then G, is open for all n = 1,2,... « We

R 0
claim that A = Gpe It is clear that A & () G,. Now if x ¢
¢ A, then x¢S for all Se & . If x¢int S for all Se & ,
then of course x¢ G, for all n = 1,2,... . Therefore x ¢

© — , -
¢ 7 Op. If xeint S for S, e £ , then x¢lg p&int S for
8all S € £ , S¥S_, n =1,2,... . However, x¢S, =f\Gs°’n,
there exists an integer n_ such that x&G . Hence

o So’no
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x¢cn° = U{Gs’nozs s £} . This proves that A = NG_. It fol-

lows that A € ¥ . To finish the proof of the lemma, we must
prove that A = X. Suppose that our claim is false, then X\ X
is a nonempty open subset of X. By the assumption there exists
a Gy -subset McT such that Meint MsX\A. Then M s 7/ and
int MNint S = B for all S € & . This implies that LU {N}e
€ 7N which contradicts the assumption that £ is a maximal
element of 7% . This completes the proof.

Now let X be a topological vector space, S be a family of
bounded subsets of X, In this paper we always assume that S
possesses the following properties:

a) If A,BleS then there exists a Ce S such that AUB<C.

b) U{dA:AeS,AeR,}t =X,

Definition 1 ([26]1). Let X, Y be topological vector spa-
ces, £ be a mapping from an open subset £l of X into Y. We say
f is S-differentiable at x e L 1if there exists a linear con-
tinuous mapping Te L(X,Y) such that t'l(f(xo#th) - r(xo)) con-
verges uniformly to T(h) on each subset A¢S when t —» o, i.e.
for each O-neighborhood V of Y and A€ S there exists a > 0
such that t™l(g(x_*th) - £(x)) - T(N) €V for all heA, £:0<
<|tl<d.

If S 1s the family of all finite subsets of X, then f is
sald to be Gateaux-differentiable at x .

If S is the family of all bounded subsets of X, the f is
said to be Fréchet-differentiadble at Xqe

Remark. If X 15 a normed space then without loss of ge-
nerality we can suppose that every subset A from S is contain-

ed in the unit ball of X.
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Darinition 2. Let X, Y be topological vector spaces, f
be a continuous mapping from an open subset AL of X into Y.
£ is called generic S-differentiable if there exists a dense
G -subset A of L such that £ is S-differentiable at every
point x¢ A.

Definition 3. A Banach space X is called S-differentia-
bility space if each continuous convex finite function defin-
ed on an open convex subset of X is S-differentiable on a den~-
se G4 -subset of its domain.

Fréchet- (GAteaux- resp.) differentiability spaces are known
as Asplund (weak Asplund resp.) spaces.

Stegall 1271 has proved that a Banach space X is Asplund
if and only if its dual X¥ has the Radon-Nikodym property.
Then it is easy to see that a finite product of Asplund spa~
ces is Asplund.

Theorem 1. Let (Xa :A2€T) be a family of Asplund spa—
ces. Then each continuous convex function f defined on an open
convex subset 2 of X =3£ir,x_,~ is generic Fréchet-differen-
tiable.

Proof. Put Pr((x,)) = max{lx,H: 2 eIt for all (x, )e
€ X and each finite subset I <« T" , Then {'pI}I is a family of
continuous seminorms on X which induces the locally convex
product topology of X. Let G be any open nonempty subset of
QS , therefore G is open in X, since £. is open. To prove
Theorem 1, by Lemma 1, it is sufficient to prove that there
exists a Gy -subset M such that Mcint MEG and that £ is Fré-
chet-differentiable at every point xe M. Take X € G. Since f

is continuous at x, there exist a d'> 0 and a finite subset
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ISP such that U = {x ex:pl(x - x°)<d"}§G and |f£(x) -
r(xo)lé1 for all xeU. We claim that If(x;) - f(xz)l £

£ % p]:(x1 - xz) for sll x;,x,€ U, where d'i =d -
- max {py(x; - x), pI(x2 = x)¥. Put h = x; - x,. We have
that

a) If py(h) = O, then from the convexity of £ we deduce
that £(x;) - £(x,) = £(x, + b) - £lx))2s"  [£(x, + sh) -
- £(x,)] for all s Z1. Now py(h) = O implies that x, + she U

-1
- £ -

for all s€ R. Hence f(x;) f(xz)_}gns [ £(x, + sh)
- £{x,))<1im 28"} = 0. Similarly f£(x,) - f(x,)<0. Therefo-

2/l 4 lin ; 2 1
re 'f(xz) - f(xl)lé 2'6'1 pI(xz - xl)-

b) Suppose that py(h) =r>0. If r 2J7, then If(x,) -
- tx)l 24287y = 2.9 p(n). I r <d}, put b, =
= v In; then x,* n,eT, 1 = 1,2, and £(x)) - £lx,) =

-1 -1 _ =1 _ -1
£rd7 Ielx, + b)) = fx,)l22rd 70 =207 = 20 pylxy) - x,).
Similarly f(xz) - £lx;)) £ ZJIIPI(xl - x,). This proves our
claim,
Put Yp =, 00, X, , U(x, My = max {0x, N:AeI} for all (x, e
€ Y; and each finite subset Ic I , X; = {(x, Je Xix, =0
for all A & I}, Let J; be an embedding mapping of Yy into X
defined by Jy((x,)) = (y, ), where y, = x, for all e I;
¥ = O for A ¢ I. Then Jy is an isomorphism of Yy onto Xy
and N(x, My = py(Jp(x, )) for all (x, )6 Yy, Let Py be the
canonical projection of X onto Xy. Put Qp = JI]'- Pp:iX— Yy
and fI = fo JI:V = QI(U)-—)R. Then 1t is clear that fI is a
continuous convex function on V and f£(x) = fI(QI(x)) =
= £(Py(x)) for all xeU because p(x - Py(x)) = O whenever
x €U. Since X, 1s an Asplund space for all A e T , Y; 1o
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Asplund for each finite subset I € " . Therefore there exists
a Gy -subset M of Yy which 1s dense in V such that f; is Fré-
chet-differentiable at every point of M. Put N = Q7 (M) =

= Pl J (M)S U, One can verify that N is a Gy -subset of X
and N&int § = Q7'(int ¥) = U. Now we claim that £ is Fréchet-
differentiable at every point x e N. Let x be any fixed point
of N, D a bounded subset of X, € a given poaitive number.
Then Qr(x)é M and there exists a number K> O such that pp(h)<
£K for all heD. Let Te Yf be the Fréchet-derivative of fy
at Q;(x). Then there exists & f°>0, d, < d" - py(x) such
that 1220Q7(x) + k) = £1(Qr(x)) - P(K) ) £e - K~ Nkl for

Wkl < o”. Let Qf be the adjoint of Q. Put S = Q4(T)e x*.
Now take t6 R such that 0<|t|<d‘°K-l. Then py(th) < &, x +
+ the U and

I£(x + th) - £(x) - s(th)} = | £7(Qe(x + th)) - £4(Q(x)) =

- P (th) 1% K2 NQ(th)h; = ¢ -K lpy(P (th)) =

= £-X'py(th) <elit) for all heD. This proves that £ is Fré=
ehet-differentiable at x¢ N, which finishes the proof of Theo-
rem 1.

Theorem 2. Let X be a locally convex space and f be a
o’(x,x*)- continuous convex function defined on a weakly open
eonvex subset O of X, where 6 (X,X*) denotes the weak topo-
logy on X, Then f is generic Fréchet-differentiable.

Proof. Let G be an open nonempty subset of QO , therefo-
re G 1s open since {l is open, x, € G. Since f is & (X, X =con-
tinuous at x , there exist X],X3 «os Xp€X* and a d°> 0 such
that U ={xeX: I<xf, x - x> l«d’, 1 =1,2...n7c 2 and
le(x) - £(x )I£1 for all xeU. Put p(x) = max £I(xF,x>: 1 =
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= 1,2...n§, for all x€X. Then p is a continuous seminorm on
(X, 8(X,%*)) and U = {xe X:plx - x)<d? . Using the same ar-
gument as in the proof of Theorem 1, one can verify that

l£(xy) - f(x2)|-€ Zlep(xl - x,) for all x;,X,€ U, where d"1 =
=d - mex {p(x; = x), plx, - x)¥. Put V = a ker x;f. Then V
is a closed finite codimensional subspace of X. There exists a
continuous projection Q:X —» V., Put M = ker Q, P = I - Q, then
X=M®V and M is a finite dimensional subspace of X. Let
{xl,xz...xk§ be a baais of M. Since GANU is a nelghborhood of
x,, there exist a convex open neighborhood U; of P(xo) in M and
a convex open neighborhood 0; of Q(x.) in V such that Gy = U; +
+ 0,5 GNU. Let J:R —> X be the mapping defined by J(ay,85.e
ceedy) = Z:' ayxy for all a = (al,...,ak)eRk. Then J is a to-
pological isomorphism of RX onto M. Put S = J lo P:X —> Rk,
gla) = £(J(a) + Q(xo)) for all aeS(Gy) = J'l(Ul). It is easy
to see that P(x) + Q(XO)G G, € U whenever x€Gy. Then g is a con-
tinuous convex function defined on $(G;) and |£(x) - £(P(x) +
+ Qx NI£ 26 Tholx - P(x) - Qlxp)) = 287 pla(x) - Qlx)) = o,
where d'l = ¢’ - max {p(x - xo), p(P(x) + Q(xo) - xo)}> 0. Hence
£(x) = £(P(x) + Q(xo)) = g(sS(x)) for all xe G+ There exists a
dense Gy ~subset A in an open set J_l(Ul) such that g is Fré-
chet-differentiable at every point ae A. Similarly as in the
proof of Theorem 1, we can prove that f is Fréchet-differentia-
ble at every point x€J(A) + 0, and £ (x) = $*(g"(s(x))) for
all x& J(A) + 0. It is clear that J(A) + O, is a Gy’ -subset of
X and J(A) + 0,c 1nt(JCa) + 0,) = U; + O; = G,. By Lemma 1,
this concludes the proof.
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2. eric d t . In this section,
X always denotes a Banach space, S denotes a family of subsets
contained in the unit ball of the space X with the properties
a) and b) introduced in Section 1.

Definition 4. Let X, ¥ be Banach spaces, L be an open
subset of X, f be a mapping from L to Y. We say that £ is Lip-
schitzian at a point x e fl if there exist a X>0 and > 0
such that H£(x) - £(y)l2K0Nx - yN for all x,y e 2 , lIx -

- xoll<d", ly - x N <d -

£ is said to be locally Lipschitzian if £ is Lipschitzian
at every point x ¢ QL .

Definjtion 5. Let €& > O be a fixed positive number. We
say that f is locally (e,S)-approximated at x € . if for each
AeS there exist Ty e L(X,Y) and d > O such that:

(1) W £(x + th) - £(x) - T,(tn) N < € 1t] for all t: |tl<d
and he A. Denote by S¢ (£,x,A) the set of all Te L(X,Y) such
that (1) holds for some J > O

Lemma 2. Let £ be Lipschitzian at x € & . Then f is S~
differentiable at x if and only if £ is (g,S)-approximated at
x for all & > O.

Proof. 1) If f is S-differentiable at x, then it is clear
that £ is (€,S)-approximated for all € > O.

2) Now let f be (€,S)-approximated at x for all € > O.
Put S¢ (£,x,4)(h) ={T(n):TeS¢ (£,x,A)} for all heA. It is
easy to see that diam S (£,x,4)(h)£2¢ for all heA and >
> 0. Therefore there exists T(h) = ) S, (£,x,4)(h) =
=, 1in t™} [ £(x + th) - £(x)] for all heA, and NT(h) -

- TE’A(h) £ 2¢ for all Tg’AeSe (f,x,A) and he A, Hence, by
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the property b),tl_%mo t™L [£(x + th) - £(x)] exists for each
he X. The additivity of T follows from the property a) of S and
the boundedness of T follows from the assumption that f£ is Lip-
schitzian at x. This shows that TeL(X,Y). Now let € > O be
given and A be an arbitrary element of S. Take T,€ 35/3(f,x,A).
Then there exists a d > O such that Nl £(x + th) - £(x) -

- (¢l £ § It) for all t: [t1 <0 and heA. Hence

l£(x + th) - £(x) = T(th)h& l£(x + th) - £(x) - T;(th)ll +

+ Ty (t) = T(tn)l < e [ tl for all t, Itl<d” and heA. This
proves that £ is S-differentiable at x, which concludes the
proof of Lemma 2.

Pro i » Let X be the one of the following spaces:
a Hilbert space, C(S) where S is a compact Hausdorff space,
LPQ,% ,w), where @4 is a positive E-finite measure defined
on a ©-algebra = of subsets of a set L , 1£p <co and let
X* be the dual of X. Then X* possesses the following property:

(%) There exists a net of continuous linear projections
in} T of X* onto finite dimensional subspaces of ¥* such that:

1) “P:l“ £ X for some K> 0 and all i€ I,

2) {x* - Pix"§ converges weakly-star to O uniformly on
{x*e x*: W x*l £ 1%.

Proof. 1) Let X be a Hilbert space and (ey ) ¢p be an or-
thonormal basis of X. Let I be the family of all finite subsets
1 of T . We write 1;£1, iff 1,& i, for i,i,€I. Let Py be
the orthogonal projection of X¥ = X onto sp{ea tAe it for
all 1€ I, where sp{fe, : A € 1} denotes the linear hull of
{ey : Ae’ﬁ. Then it is clear that {P ; possesses the prope=-
ties 1) and 2) with K = 1.
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2) Let S be a compact Hausdorff topological space. We know
that the dual space C*(S) of C(S) is the space of all Radon me-
asures on S, and denoted by JM(S). Denote by (4x the atomic me-
esure defined by e,(A) =1 if xeA, w,(a) =0 1f x¢ A for all
Borel subsets A of S and X€ S. I denotes the family of all col-
lections (Xy,eee,X;S),00¢9Sy) where S1s+++,S, 1s a disjoint
partition of S into Borel subsets and Xy € Sk for k = 1,...,n.
Let 4, = (xk,...,xn;Sl,..-,Sn)e I; 1, = (yl,...,ym;Tl,...,Tﬁ)e’I.
We write 1,4 i, iff for each j:l< j<p there exists a k(J): 1£
£k(J)£ n such that T;SSy(g) and Xy s y; whenever x € Tye Put

m
Q =sp {pxl,-u,&xnl and Py (@) = = @u(s,) (x, Tor all 1=
= (X,e004%p3S,+++,S,) € I Now we prove that {P,}; possesses

the properties 1) and 2) with K = 1. Let @esS), then
"
P ()l = sup %l Py(@) (a1 = sup % Iz (S)) ,uxk(AJ)Lé

< u%o‘(“’(sk“é Ba¥ , for all 1 €1, where the supremum is
taken over the set of all finite collections {AJ} of pairwise
disjoint Borel subsets of S. Now let £ be an arbitrary fixed
continuous function defined on S, then f is uniformly continu-
ous on S, It is easy to see that given € > O there exists a
finite partition o =(Sl,...,sn) of S into Borel subsets such
that |f(x) = £(y) | < & whenever x,ye S, for some k = 1,...,n.
Let x), be an arbitrary fixed point of Sy for k = l,.e.yn. Put
i, = (Xy50009%Xn5Syy0005S,) € I. Now we claim that

W = Py(@N (O =1 260 a @) - [ 200 @ (By(@)fxlee
for all weM(s), Hallel, 1€1, 121 and this completes the
proof for X = C(S). Suppose i = (yl,...,ym;:rl,...,'l‘m)s I, 121,
then 1t is clear that |£(x) - £(y;)1 £ € for 21l xeTy, J =
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=1l,¢0.,m, and
Ve a @ o = fe(x) dpy (@)l = | =7 i;—i £lx) d u (x) -
- ,[3 € @ (1)) a gy () = | erl;é(f(x) - £y a @) £

£ =P [ leo - syplalglen £ elalze”
¥

3) et X = LP, 14p < o , then X* = L3, where p* + q"'=

= 1. Let I be the family of all finite partitions i = (Ey,...
...,En) of L such that E e = , w(E)>0 for all k = 1,...,n.
We write i,£1, iff Fngk whenever FjﬂEk4=D, for j =1,...,m;
k =1,000yn5 1) = (B, E)eT, 1) = (Fyyees Fp) € I Put (ta-

king géTx)_ = O for all x € L)) (Pig)(x) =

=Z:[./;.k(w(Ek)'l g(t) d @ ()] gg (0.

We shall prove that (P;); possesses the properties 1) and 2)
with K = 1.

If q =0 , then it is clear that P, g K,2Ngll for all ge L4,
Now let 1<q < © , geld, i = (Ey,...,E )€ I:

NPueld = L1 X7 (O @B at) 4 @(t) 2g (1% a @x=

= fo =M fE&(J-(Ek)—l g(t) a (u(t)|qir,Ek(x) a @ (x)
= Z?Q(Ek)l-qlfehg(t) d w(t)£ z;n(w(Ek)lhq .

.(.f;_:bd @ ()P ../éblg(t)lq a @lt) =f g% a w(t) =
=1 glld.
This proves that llPi Il £1 for all 1€1.

Now we suppose that f be a fixed function from LP. We shall
prove that for each € > O there exists an i€ I such that
| ffgdee - £.(Pig) dw |4 & for all 1€I, 1Z1  and g€
eldligii«,
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Let € > O be given. Then there exists a simple measurab-

le function £, = =7 c,. T g, ouch that U £ - £l < 2l e.
Without loss of generality we can suppose that (?Ek =
Put 1 = (Eyyeee,By) € I Let gellllgh <1 and 161, 1 =
= (Fy,ee.,F )21 . Then for each k = 1,...,n there exists an
oy €41,...,m% such that E, = U{FJ:J € ock}. Whence r =
= l‘éf(x).g(x) a @ (x) —f f(x) (Pyg)(x) d ()] =

= 1y (22 ) (0g(0d @(x) +5 1 5, f,_, ¢ &8(x) 4 @(x) -

ud

-1
-z 45%( f”:: @B glt)a @ (1)) qu(x)d wx) 1<
w _p-l
£ le-e l-Nehs 2 = ( f"'v"“(FJ) lg(t)la @(t))-
(Lm0 (ome(a)) 1 g ()
F -f d xJ)e
Fy “F otixia ¢
If q = g0 then it is clear that r<£2 Ilf—fo h-neil.

Suppose that 1<q < 00 . Then

n 8 -1

r<lie-e Nl ligh+ (Z, Z“b(‘f;.,_’p(ﬁ‘l) P lgt)la ()N .
-1 -1

. z =, J‘Fé(u(pj)‘q ley=e(x)d @ (x))PIP "<

g -1 ( pqt
< le-e Bl Ngh+ (L Z, E&&(f,(a(p) 4 @(x)P1,

-1 -1

u;él ep-t(OIP a @wlx)P . (2 1%, (e (Fp L au NP,

-1
C LN eI =2 gl g, N

This completes the proof of Proposition 1.

Remsrk 2. Let X be a Banach space. If its dual X* has a net
(Pi)I with the properties 1) and 2), then we say that X* posses-
ses the property (X ) with respect to (Py) 1.

We shall use the following notations.

Let X, Y be Banach spaces, £ be an open subset of X, f be a map-~
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ping of L inte ¥, x e 0L , r>0,

afe,x) ={MnlMt Ay £(p): ly-xll &, 0<linli&r?

where Ahf(y) = ply+h) - £(y),

B (£,x) = {f(xl) + £(x,) - 2f (J—(;;:g):xisx, ﬂxi-x h<r,
i=1,2}.

For Ac Y, «(A) denotes the measure of noncompactness of A de-
fined by 7(A4) = inf {t >0: there exists s finite subset C<SA
such that A€C + tBl§ where B; = {ye¥:lyl£1%. We use the
symbol A® defined by A* = {y*e¥Y*:{y*,y> 2 0 for all yeAl.

Theorem 3. Let X be an S-differentiability Banach space
and Y be a Banach space, whose dual Y¥ possesses the property
(X) with respect to (Pi)iex, f)l be an open subset of X. Let f
be a mapping from (L to Y such that:

1) '1"1_1)110 (a,(£,x)) =0 for all x e O,

2) for each open nonempty subset G & £ and each i€ I the-
re exist an x€ @G and an r>0 such that me P, (YF). Then
f 1s generic S-differentiable.

Proof. We denote the canonical embedding mapping of Y in-
to its bidual Y** by o¢ . Let K be a positive number such that
] Piu %K for all 1€ I and & be an arbitrary given positive
number. Put T¢ ={x € L : £ is (g,¥)-approximated at x§. We
shall prove that T. contains a dense Ggy'-subset in fL for all
¢ > O. By Lemma 1, it suffices to prove that for each open non-
empty subset G € fL there exists a Gy~ -subset NeTg such that
Ncint NEG. Take an x € G. Since ki;nofr(Ar(f,xo)) = O there
exists an r>0 such that xeG for all xeX, le—-xoﬂ < r and

q“(Ar(f,xo))<E4(K+l)J-l€- . Therefore there exist ¥yje.e,¥) €
€Y such that AL(£,X)€ {y;,...,y, } + [4(K + 117! € By, where
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B; =f{ye¥: lyll £1}. Put K) = max {nylu seoes uyk||;+ € .
Then Iyl £ K, for all ye€ A.(f,x.) and hence f is Lipschitzi-
an at x . Since Y possesses the property (x) with respect to
(Pi)I’ there exists an i e I such that (y* - P;¥y ,yJ> <4t e
for all y¥e ¥*, ly*h£1; j=1,...,k; 1€I, 124 . One cen
verify that <{y¥ - Piy"‘,y>é 2_1- € for all y*¥e Y,
ly*0W41; yea,(f,x,), 1€ I, iZi . On the other hand, by 2,
there exist an x; e{x: Nx-x Ml < r} and ry:0<r;<r - | x=x, K

such that Qio = Pio(Y*)Ssp B; (£,x7). Let {e],... e}t be a
basis of the subspace Qi ’ ﬂe l=1 for J=1,..0,n., Put
[
n
Wy*ly = Z,‘lljl for y* = Z A JeQi . Then l-H, is a
norm on Q; and it is equivalent with the norm l»#l restricted
o
to Qio. Therefore there exist K,,K3>0 such that K, ly*H £
<ly*hy€K; Hy*N for all y*eQio. Take 23*6 sp 8;1 (£,x;) such
that Iy - 2§l & L4k kK) e , for § = 1,...,n. Since 7§ €
* L3 x L]

€ sp Brl(f,xl) there exist uJ,l""’uJ,kJe Bzfl(f’xl) and tJ,-l""J

« &, « _
tJ,kJE R such that zy -A§41 td,suj,s for J = l,ees,n. It is

Vi+ ¥

« « - * 1 2y -

easy to see that (uj,sf)(vl) + (“J,sf)(vz) 2(uj’sf)( > ) =
+ _ v,
=y goflvy) + £lv,) - 2£(55—=2)> 20 for all s = 1,...,ky;
= . - = *

J=1,000yn; vpeX, lvy=x; & vy, k = 1,2, Hence u‘j'sof;a a
continuous midconvex (therefore convex) function on the open
convex subset U ={x: M x-x1|<rl}£-G, for J = 1l,.ee,n; 8 = 1,40,
...,kj. Since X is an S-differentiability space, there exists a
dense Gd-' -gubset H of U such that u* _of 1s S-differentiab-

Jy8 Je8

le at every point XEHJ g for all j = 1,e.4yn; 8 = 1""'kd'

Put N = A f\h{ € G. Then N is a Gg4*-subset which ie dense
=1 #=4"J,8
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'
= T ¥ -
in U. Tt is clear that Z4f = ¥ty Juj or 1s S-differentiabd-
le at every point xeN for j = 1,..-,n, Now we prove that 2o ¢
is (g,S)-approximated at every point xe N, Let w w5 be a linear
¢ *) = X =
functional on Qio defined by wy (y ty for y = 1:‘,1(2)‘36Q._l ’

j=1,...,n. Then of course we have twd(y")!- | vy (y™ ] =

= |y¥ llléK3 y*ll for all y*e Qio, J=1,...,n. One can see

that

" Ky A

X o * = x ¥ o X £
I Pioy =, WJ(Pioy ) zJﬂ = wJ(Pioy )(e'J 2y )} |
-1 A -1, *

s<41<x11<3) € Ky npioy M £ 4x) e llyxl.
Let x be an arbitrary fixed point of N. Denote the S-differen-
tial of the function z‘f.]o £ at x by d(z’Sof)(x) for J = lyee.,n,

Let K, = max { |l d(z’jof)(x)ﬂ :J=1,...,n}. Then the functional

4
B(h,y*) on XxY defined by

B(h,y¥) = z"j w.(Pi v . d(z"E +£)(x)(h) for all heX, y*e Y¥,

is bilinear. Furthermore, |B(h,y®)|= = |w (Pi Fa 1 l\d(zd.f)(x)ﬂ
. WnleZ g ln le(Pi ¥y 14KK K, Inll ly*) .

This shows that B(h,y*) is continuous and for egch fixed he X,
B(h,.) e Y*™, Let V be a mapping of X into Y** defined by V(h) =
= B(h,.), then V is a linear continuous mspping and llVﬂéKK:iK‘.
Let A be an arbitrary fixed subset from S. Then there exists a
d:0=<d< r, such that

Iz £)(x + tn) - (2§ £)(x) - alz] £) (x)(th)] £ (4KK; )7L £ it
for all t such that {t| £ ¢” and h€A. Take an srbitrary fixed
number to:0<lt°\ £d", heAand y € Y* ,ly*H £ 1; then

o (tgohgyy®) = 1<tgh Do £(x + £ 0 ) = %o £lx )] -

- V(ny),y*> =1 t';l y*,Atohof(x) - Blh, ¥y 2| <y*- Pioy"‘.

Negholl T8 Ay 2G> Vgl o <Ry y% = X wy(Py ¥,
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6 By p £O> 14 1E wylpy ¥ 45T afo2lo v thy) -

- ZB o £(x)] = d(zgaf)(x)(ho)} J.
Since Nx-xoll £lix - Xl“ + | X1 "X her) + lel-xoll < r and
W tghoh = le 1l hollé \tol £ d'< ry<r, it follows that

- " -1
1{y* = 7y 3% Neghol Pog s> inglea e

and Ky y*- = wJ(Pioy*‘)zg, 21 At h £(x)> |£0pyy* -
= X wy(Py yf NN ong L tgh, I LAt £ (k)™
cely ik &ate

lzz”wj(Pioy*Ht;lLi‘:jf(x * tohy) = Zje(xl- a(Z5ef) (x) ()} £

< (axxy ™ e Z;nle(Pioy*)lé. aLoe.

This means that cc(to,ho,y*)é.e, . Since to,ho,y* are taken
arbitrarily, & (t ,h,y*) £ & for all t:0<|itl<d , hea, yel¥
ly* Wl <1l. Hence

b t7 oo £lx + th) -2ee p(x) - vini ="¢;“‘ipﬁ'1 altyh,y*) 2 €

for all t:0<ltl<d”, he A. This shows that seof is (g,S)~ap-
proximated at x. Therefore for each ¢ > O there exists a dense
Gy-subset Mg of . such that 2o £ is (8,S)-approximated at e~
very point xeMg. Put T = /:% Ml/n. Then T is a dense Gg-subset
of 0. and 2o f is (€,S)-approximated at every point x¢T for all
€ > O. By Lemmg 2, 3¢ o £ is S-differentiable at every point xeT.
Therefore f is S-differentiable at every point x €T, as 2¢(Y¥) is
a closed subspace of Y**and 2¢ is en isometric isomorphism of ¥

onto 2(Y). This completes the proof of Theorem 3.

Remark 3. From the proof of Theorem 3, it follows that
the condition 1) in Thenrem 3 can be replaced by the following

one:
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1) £ is locally Lipschitzian and for each x e £l and
© > 0 there exist an r>0 and i € I such that
\Ky*- PiY",y>\£—5 for all ye A (f,x), y¥e Y*: fy*h&l
and 1€¢I, 121 .

Corollar . Let X be ap Asplund space and ¥, L, f be
as in Theorem 3. Then f is generic Fréchet~differentiable.

Recall that under a convex cone in a linear space X we
understand every convex subset C of X such that C + C&C,
ACEC for all A Z 0. Now let X be a Banach space. We shall
say that a subset A< X has the property (xx) if there exists
a (3> O such that sup{l <x*,x> | :x*e a*, [ x*l 41} > B} xIl
for all xe X. It is easy to see that if cA denotes the closed
convex cone in X generated by A then A has the property (%)
if and only if C, has, because CX = a°.

Lemma 3. Let X, Y be Banach spaces, L be an open subset
of X, £ be a continuous mapping from & to Y such that for each
x € £ there exists an r> 0 such that Br(f,x) has the property
(x%), Then f is locally Lipschitzian on £ .

Proof. Let x be a fixed point of f2 . By the assumption
there exist an r»0 and a (3> O such that sup{|<y*,y>kiy*e
€ Ba(£,x), [y*ll £ 1} 2 Bllyll for all ye7; note thot B £ L.
Let C be the closed convex cone in Y generated by Br(f,x)- We
claim that (1-t)£(x;) + tflx,) - £((1-t)x; + tx,) € C whenever
x, €X, I X4=X < r, 0O£t#£1. Suppose that this claim is false.
Then there exist x;€ X, lxy=xfl<r, 1 = 1,2, x;¥x, and t €
€ (0,1) such that y = (1-t )f(x;)) + t flxy) - £((1-t))x; +
+ tox2)¢ C. Then by the separation theorem, there exists a

y’o‘eY"‘ such that <{y§,y > <0 é<y;,y> for all ye€ C. Hence
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yie €t Put g(t) =< £lx; + tlxy=x;)) - £lx;) =

- t[f(xz) - f(xl)J ,y;,) « Then g is a continuous function on
£0,1] and g(0) = g(1) = 0. Let t) be a point from (0,1) such
that g(t;) = max {&(t), 04£t£1}. Put d'= min {1-t;,t,}>0,

One can verify that g(t;+d’) + g(t;-d) - 2g(t;) =

<elxg+ (t1+d')(x2-xl)) + £lx; + (-0 (x, - x;)) -

2f(xl+ tl(xz-xl)),y:) <0. Put u = x; + (tl—d‘)(xz-xl),
v =x + (t;40)(x57%;), w = x;+t;(x,-x;). Then w = 271 (u+w)
and < £lu)+ £(v) - 2£(w),y%> < 0. This contradicts the fact
y5€C® and £lu)+r(v) - 2£(W)e C. This proves our claim Since
£ is continuous at x, there exists a d > O, &< r such that
Il £lw) - e(x)ll < 47 for all ueX, lu-xll<d, Put s = P
and let v,we X, lv-x A <s, lw-xll<s. If lv-wliZ s then
he(w-e(v) h & 2712 (s {3)_1 lv-w Il . Now suppose that 0< || v-wl<
<s. Put h =w-v, h =8 Dhih. One can conclude that
(="M nl)e(v)+s™ N nll £(vsh ) - £(w) € C. Therefore
£(v) - £(w) = 8" N h )l [£(v)-£(v+h )] € C. Similarly
£(w) = £(v) = 8" N nILe(w-£(w-h )] € C.
Hence | < £(v)=£(w),y*> 128 LI nll [I< e(v)-glusn ) ,y*>| +
+ [<£(w)=£(w-n ) ,y*>|1 for all y*e C°. Therefore
pll £(v)=£(w)l £ sup {1<e(v)=2(w),y*> | :y¥e c®, ly*ll <« 13 £
287 nl (N e(o)elorn )N+l £lw-2lwn )N I 28 Il
Whence | £(v)=f(w) ]l £ (s (5)-1 Av-wll for all v,weX, Ilv-xll< s,
| w-x )l < s. This proves that £ is locally Lipschitzian and the
proof of Lemma 3 is complete.

C lar, « Let X be an S-differentiable Banach space,
Y, Z Banach spaces, §L an open subset of X, f a mapping from
L to Y and X a linear compact mapping from Y to Z. Suppose
that £ is continuous and for each open nonempty subset G & o
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there exist an xe G and an r>0 such that B,(f,x), B.(Ko £,x)
have the property (¥*). Then g = Ko £ is generic S-differen-
tiable.

Proof. Let G be any open nonempty subset of Q. . By the
assumption there exist an X, € G and an r> 0 such that Br(f,xo),
B, (Ko f,xo)‘» = K(Br(f,xo)) have the property (x*), Put U =
={xeXx: |l x-x I < r}¥. To prove Corollary 2, it suffices to pro-
ve that g is generic S-differentisble on U. Put W = {z*€ Z'?

s hz* 0 1y 0 (KB (£,x)))" ={z*€By(Ke £,x), I2¥Il £ 1},
Then W endowed with the weakly-star topology &(Z*,2), restric-
ted to W is a compact Hausdorff topological space. Let C(W) de-
note the Banach space of all real continuous functions defined
on a compact space W and 2¢ the embedding mapping from Z to C(W)
defined by @ (z)(z*) =<{z,2¥> for all 2€2, z*€ W. We claim
that 2¢ is a topological isomorphism from Z onto a closed sub-
space of C(W) and 2 (z)(z¥)Z 0 for all z € K(B,(£,x ), z*€ W,
It is clear that ¢ is a linear mapping from Z into C(W). Since
Br(Ko f,xo) possesses the property (&%) there exists a 3 > O
such that Bl z b& sup {I<z*,z>) :ztewi=flae(z)l< fl zll.
This proves that 2e is a topological isomorphism of Z onto
9(Z) and since Z is complete, 2¢(Z) is a closed subspace of
¢(W). Furthermore, if zeBr(g,xo) then 2(z)= 0, since W
E.B;(g,x). Thus our claim is proved. One can see that the map-
ping h = 2ee gIU:U-—-> c(w) is S-differentiable at x if and on-
ly if g is S-differentiable at x. We know that (Proposition 1)
¢(w) is a Banach space whose dual C¥(W) possesses the property
(%). To finish the proof, it suffices to prove that h satis-
fies the conditions 1) and 2) in Theorem 3. Let u be an arbit-
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rary fixed point of U, Take an 8> O such that {xe X: || x~u ll< s}c

€U. Put U) = fxe X: | x l<27 e} and

Ag(x,k) = { Nl Ce(xek) = £(x)) for x € (uy) ke Uy, k+0,
0 for xc u+lUy, k = O,

By the assumption and Lemma 3, f is locally Lipschitzian on U,

there exist d':0 <d'< s and M>0 such that

bew)=p(w) b = Mlv-wll for v,weX, lv-ull<d” ,ffw-ull<d™

Put vy = 270" , U, ={xeX: Ixll<ry}. Then | A £lx, k)l £ W

for all (x,k)e (u+U2)>< U,. From the compactness of the linear

mapping a¢o K, it follows thst Arl(h,u) = ®o Ko AP((utl,)=

XUZ) is a precomm ct subset of C(W). This means that

1n1£07(Ar(h’“)) = 0, and the condition 1) in Theorem 3 is sa-

tisfied. On the other hand, we have B] (g,u)2 B;,(g,xo) as
1

Brl(g,u)EBr(g,xo). Hence C¥(W) = spixe C¥W):w =2 0% =

€ sp B;l(h,u). This proves that the condition 2) in Theorem 3
is satisfied,too, and the proof of Corollsry 2 is complete.

Now we give some applications of Theorem 3 to the problem
of generic differentiability of convex mappings. All notions
concerning Banach lattices used here are standard, we refer the
readers for instance to [23].

Definjtion 6. Let X be a Banach space, Y a Banach lattice,
QN an open convex subset of X. A mapping f from £ to Y is
said to be convex if P((1-t)u + tv) £ (1-t)f(u) + t£lv) for all
u,v e 1 , tel0,1.

Corpllary 3. Let X be an S-differentiability Banach spa-
ce, Y, Z Banach lattices, L. an open convex subgset of X, f a
continuous convex mapping from L to Y, K a linear positive

compact mapping of Y into Z. Then g = Ko £: (L — Z is generic
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S-differentiable.

Proof. It follows immediately from Corollary 2, if we no-
te that the positive cone in a Banach lattice always has the
property (#*). In fact, let Y be a Banach lattice and C, the
positive cone in Y. Then Y* is also a Banach lattice and Cj
is the positive cone in T* . If (y*)*, (y*)” denote the posi-
tive and negative parts of y* respectively, then<y*,y> =
=<{(y®M*,y> - {(y%7,y> for all y*€ Y , y€ Y. Therefore
sup 1< y*5,¥> 1 ty*e €2, Ny <N £132 270 sup {I<y*,y> | : Ly*h £
£1% = 2_1||y|l. This completes the proof of Corollary 3.

Defini . Let X, Y be Banach spaces, {1 an open sub-
set of X. A mapping f from £l to Y is said to be locally com
pact if for each u € £l there exists an r>0 such that the set
{£(x): h x~ull<r} is relative compact.

Corollary 4. Let X be an S-differentiability Banach space,
Y a Benach lattice whose dual Y* has the property (%) with res-
pect to a net {Piil of band projections. Then each continuous
convex locally compact mapping £ from an open convex subset Q.
of X into Y 1s generic S-differentiable.

Proof. It is clear that to prove Corollary 4, it suffi-
ces to prove that £ satisfies the condition 1°) in Remark 3.

By Lemma 3 f is locally Lipschitzian. Let X be any point of
L . Since f£ is locally compact, there exists a o> O such
that £ maps {xeXx: | x—xo|l< d"} into a relative compact subset
of Y. Put r = 271d" . Then D, =1l W™ (e(xen) - £(x)):
:]lx-x°"'< r, Ink = r}é:r-l({f(x):llx-xoﬂ £ 2p} - {£(x):
:l‘x—xon < r%) is relative compact. Now let € be any given

positive number. Then there exists a finite subset fyy,...,y,}
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-1
such that Dre{yl,...,yni +4 7eB (Bl ={y: by l<£1}). By
the assumption there exists an 1 € I such that [<y* - Piy*,y‘j>lﬁ
24 e forall y¥e¥ ,Ily*l €1, §=1,...,n, eI, 121,

l& for all y €

It is easy to verify that I{y* - P,y%y Slg2”
€D,,y*e Y* ly*I £1 and 1€1, 124 . Let yeh(f,x ), y40.
Then there exists an xe€X, "x—x°||<r, heX, 0<khl|l&«r such
that y =]|hl|-l(f(x+h) - £(x)). Put k =} hl" rh. From the conve-
xity of £ it follows that 7} = r -(£(x) - £(x-k))& y#

227 (e(x4k) - £(0)) = F,, Fy,Fp€ Dpe Hence: -271.e 2 <(y¥)* -
 ACOMVRERIPLMES NEOMED E 2R MER A OMS e
2he ; 2l e e L(yNT - B(yMT,F 2 £ (M -

Py (y9) 7,y >4 <(yMT - B (317, 7,0 & 271
Nyxlh<1, ie1, i> 1, Therefore 1<y* - Piy*,y>l = 1<(yH* -
Pi(y*)+,y)-<(y*),' - Py, 321 £ e for yre ¥, Jy*ll <1,
ieI, 12 io. This proves that f satisfies the condition 1°) in

LN

. & for all y*eY¥

Remark 3 and the proof of Corollary 4 is complete.

Using Theorem 2 and slight modifications of the proof of
Theorem 3 we get

Theorem 4. Let X, Y be Banach spaces, Y#* have the property
(%) with respect to 4P} . Let £ be a &(X,x¥) - & (Y,¥¥)-con-
tinuous mapping from X to Y such that:

1) ’E’mo y (&,(£,x)) = O for all xeX,

2) P(Y9)e gp{r(u) + £(v) - 2£( uT-’-v ):u,ve Xi* for all

iel.

Then £ is generic Fréchet-differentiable.

Corollary 5. Let X be a Banach space, Y, Z Banach latti-
ces, let £ be a continuous convex mapping from X into Y, which

1s € (X,X*) - & (Y,Y¥)-continuous; K a linesr positive compact
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mapping from ¥ to Z. Then g = Ko f is generic Fréchet-diffe~

rentiable.

3. Generic differentinbility of Hammerstein operators. In
this section we shall consider the differentiability of Hammer-
stein operators.

Theorem 5. Let K(t,s)e LP(L0,11xL[0,1])(K(t,s) €
e ¢(L0,11x[0,1]) resp.), 1<k <c© , g(t,s) be a function de-
fined on Rx[0,1] satisfying the Carathéodory condition and such
that

1) g(.,s) is convex continuous for a.e. sel0,1],

2) lglt,s)l«a ltlkq“l + b(s) for all teR, and a.e. s &
Lagl=1, az0, ble)e 1%[0,11).
Then the Hammerstein operator H(u)(t) = J;'K(t,s)g(u(s),s)ds is

e L0,1], where 1<q £ 0 , p';

generic Fréchet-differentiable on Lk(EO,l]).

Proof. Let K*(t,s), K (t,s) be the positive and negative
part of K(t,s) respectively. Then K*,K e LP([0,11%[0,11)
(e c(lo,1]xL0,11) resp.). Put K;(u)(t) = JS’K*(t,a)u(s)ds,
Ky(u)(t) = _g’ K (t,s)u(s)ds for all ue L., Then Ky, K, are 1li-
near positive compact operators from LY to LP (to ¢(C0,11)
resp.). We know that the Nemycki operator N(u)(s) = glu(s),s)
is a continuous operator from Lk to L9 when g satisfies the
condition 2) (see [24]) and it is convex when g satisfies the
condition 1). Hence the operators H) =Ko N, Hy = Kzo N are
generic Fréchet-differentiable on L¥ by Corollary 3. Therefo-
re the Hammerstein operator H = H; - H, is generic Fréchet-
differentiable on Lk, which concludes the proof.

We know that C(L0,1]) is a separable Banach space and the-
refore C(f0,1]) is a weak Asplund space. Then we get
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Theorem 6. Let K(t,s)e LP([0,11x[0,11), l2p < o0,

g(t,s) be a continuous function on Rx [0,1] and let g(.,s) be

a convex function on R for all sel0,1}. Then the Hammerstein

4
operator H(u)(t) = j; K(t,s)g(ul(s),s)ds acting from ¢(L0,1]1)

to LP([0,1)) is generic GAteaux differentiable on ¢([0,17).
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