Previous |  Up |  Next

Article

References:
[1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 354-360. MR 0222426 | Zbl 0174.46001
[2] J. BANAŚ: On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carolinae 21 (1980), 131-143. MR 0566245
[3] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. 60 (1980), New York and Basel. MR 0591679
[4] A. CELLINA: On the local existence of solutions of ordinary differential equations. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 293-296. MR 0315237 | Zbl 0255.34053
[5] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis. Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
[6] G. DARBO: Punti uniti in transformazioni a condominino non compatto. Rend. Sem. Math. Univ. Padova 24 (1955), 84-92. MR 0070164
[7] K. DEIMLING: Ordinary differential equations in Banach spaces. Lecture Notes in Mathematics 596, Springer Verlag 1977. MR 0463601 | Zbl 0361.34050
[8] K. GOEBEL W. RZYMOWSKT: An existence theorem for the equation $x = f(t,x)$ in Banach space. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 18 (1970), 367-370. MR 0269957
[9] K. KURATOWSKI: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[10] T. ROGER: On Nagumo's condition. Canad. Math. Bull. 15 (1972), 609-611.
[11] B. RZEPECKI: Remarks on Schauder's Fixed point principle and its applications. Bull. Acad. Polon. Sci., Sér. Sci. Math. 27 (1979), 473-480. MR 0560183 | Zbl 0435.47057
[12] B. N. SADOVSKI: Limit compact and condensing operators. Russian Math. Surveys 27 (1972), 86-144. MR 0428132
[13] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. MR 0239238 | Zbl 0177.18902
[14] S. SZUFLA: Measure of noncompactness and ordinary differential equations in Banach spaces. ibidem, 19 (1971), 831-835. MR 0303043
[15] S. SZUFLA: On the existence of solutions of ordinary differential equations in Banach spaces. Boll. Un. Mat. Ital. 5, 15-A (1978), 535-544. MR 0521098 | Zbl 0402.34002
Partner of
EuDML logo