[1] G. MACKEY: Mathematical Foundations of Quantum Mechanics. Benjamin, 1961.
[2] I. KAPLANSKY:
Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math., 1955, 61, 524-541.
MR 0088476 |
Zbl 0065.01801
[3] C. DUCKENFIELD: Eigenvalues in continuous rings. submitted to Acta sci. math.
[4] J. von NEUMANN:
Continuous geometry. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100.
Zbl 0014.22307
[5] J. von NEUMANN:
Examples of continuous geometries. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108.
Zbl 0014.22308
[6] J. von NEUMANN:
On regular rings. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713.
Zbl 0015.38802
[7] J. von NEUMANN: Algebraic theories of continuous geometries. Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22.
[8] J. von NEUMANN:
Continuous rings and their arithmetics. Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349.
Zbl 0017.14804
[11] P. HALMOS:
Measure Theory. Van Nostrand, 1962.
MR 0033869
[12] F. MAEDA:
Kontinuierliche Geometrien. Sp. - Verlag, 1958.
MR 0090579