Previous |  Up |  Next

Article

References:
[1] G. MACKEY: Mathematical Foundations of Quantum Mechanics. Benjamin, 1961.
[2] I. KAPLANSKY: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math., 1955, 61, 524-541. MR 0088476 | Zbl 0065.01801
[3] C. DUCKENFIELD: Eigenvalues in continuous rings. submitted to Acta sci. math.
[4] J. von NEUMANN: Continuous geometry. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100. Zbl 0014.22307
[5] J. von NEUMANN: Examples of continuous geometries. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108. Zbl 0014.22308
[6] J. von NEUMANN: On regular rings. Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713. Zbl 0015.38802
[7] J. von NEUMANN: Algebraic theories of continuous geometries. Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22.
[8] J. von NEUMANN: Continuous rings and their arithmetics. Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349. Zbl 0017.14804
[9] J. von NEUMANN: Continuous Geometry. Princeton 1960. MR 0120174 | Zbl 0171.28003
[10] L. SKORNYAKOV: Complemented Modular Lattices and Regular Rings. Oliver and Boyd, 1964. MR 0169799 | Zbl 0156.04101
[11] P. HALMOS: Measure Theory. Van Nostrand, 1962. MR 0033869
[12] F. MAEDA: Kontinuierliche Geometrien. Sp. - Verlag, 1958. MR 0090579
Partner of
EuDML logo