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A CONTINUOUS GEOMETRY AS A MATHEMATICAL MODEL FOR
QUANTUM MECHANICS
Christopher J. DUCKERFIELD, STORRS, Conn.

Introduction. The usual assertions of quantum mecha=-
nics are that observables are self-adjoint operators in
Hilbert space, states are vectora in this space, and the
expectation value of an observable A in the state ¥
is (AY¥, ¥) . The "pure" states are associated with
unit vectors (i.e. "points") in the Hilbert space. G
Mackey (1] has produced a set of axioms for the standard
model for quantﬁm mechanics which gives a mathematical
theory in accordance with the above assertions. The spec
tral theory for operators on a Hilbert space plays a vi-
tal role in this analysis.

This theory is developed from the basic assumption
that underlying every physical system is an orthocomple=-
mented lattice, namely the lattice of experimentally ve-
rifiable propositions about the system. This lattice is
called the "logic" of the system. In the case of classi-
cal mechanics the logic is & Boolean algebra, the dist-
ributivity corresponding to the fact that all observa-
bles are simultaneously measurable. However, in the case

of quantum mechanics the distributivity is lost, since
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observables exist which are not simultaneously measur-
able. In the standard model, where we assume the logic
to be isomorphic to the lattice of closed subspaces of
an infinite-dimensional, separable Hilbert space, the
lattice 1s not even modular. Modularity would imply that
the lattice was a continuous geometry 2] end all the
desirable properties of Hilbert space, in particular the
spectral theory for operators on it, existence of "points",
and the well-established theory of Hilbert speces, are
lost. Consequently, a model for quantum mechanics with
any physical relevance based on a continuous geometry has
never been produced. However, a spectral theory for ele-
ments in a continuous ring has recently been developed
(3] and we attempt to replace the Hilbert space of the
standard model by a particular kind of continuous ring.
Contimuous rings arise in conmection with the continuous
geometries of von Neumann (see [4]-[9]), and if R is
& continuous ring it is associated with a continuous geo=-
metz}y, namely the lattice of its principal left ideals
[9). If R replaces the Hilbert space in the model,
then the logic of the system is the continuous geometry
associsted with R

1. Contipuous geometries and regular rines,

A continuous geometry is a complete, complemented,
modular, irreducible lattice satisfying two continuity
conditions and which admits infinite chains.



l.1., Definition. An associative ring R  with a
unit is regular if axa = @ is solvable in R for
all a € R .

If L is a continuous geometry with homogeneous
basis of order = 4  then there exists a regular ring
R , called the co-ordinate ring of L , such that
L. and the lattice of all principal le?t idesls in R
are isomorphic. It is possible to &fine a unmique dimen~-
sion function "dim" on the lattice, which in turn makes
it possible to define a unique rank function x» on the
co-ordinate ring, by setting n(a)=dim((a,)) for a €
€ R .The range of % is the closed interval [0, 11,
and the ring is irreducible and also complete in the rank

metric O'(a, &)= # (a-4) . & complete, regular,
irreducible rank ring is celled a gcontinuous ring and it
can be proved that the lattice of principal left ideals
of such a ring is a continuous geometry. There is there-
fore & one to one correspondence between continuous geo=-
metries and continmuous rings.

We will need the following properties of regular
rings (proved in [201).

1.2, Theorem. For an associative ring R with a
unit the following are equivalent.
i) R 1is regular.
ii) Every principal left ideal is generated by a unique
idempotent.
1i3) The principal left ideals of R form = complemented



sublattice of all the left ideals of R .
iv) Every principal left ideal of R has a complement
in the lattice of all left ideals.

1.3. Theorem. i) If R is the union of a finite
set of principal left ideals {(a;), : t=4,2,...,m%
then theré exists a unique collection of idempotents
4 €,,€5,:005 €, such that (@) =(¢;),e+......+
+e,;=4 ande‘ejzo for i4 Z -

11) e?= ¢ implies (e):= (1-e), ana (e )f =
=(1-¢e) .

ii1) (a ):l- (a), and (a,):m- (@), for all a € R .
1v) The mapping (@), — (@), is & lattice anti-
isomorphism of the lattice of principal left ideals of
R onto the lattice of principal right ideals.

v} If (e) is aright ideal and e? = e , then e
is central.

vi) The center Z of a regular ring is also regular.
vii) R is irreducible if and only if the center is a
field.

2. Eigenvalues in continuous rings.

R will denote a continuous ring, X 1its center
and & the rank function on R .

The results of this section are proved in [3].

2.1. Definition. Let @ &€ R . Then an element &€
€ R 1is said to be an eigenvalue of @ if and only
if Y€ Z and néa-4) < 1.

We can prove



2,2, Lemmg. There are only a countable number of
irreducible, monic, s—~singular (i.e.xlnn(a)l)l<1)
polynomials 41 (x)  with coefficients in Z .

Hence we immediately get

2.3. Theorep. let @ € R . Then @ has only a
countable number of eigenvalues.

2.4. Definition. X € R is a principal vector
of degree A corresponding to the eigenvalue .4~ of

@, if x@-0%2 0 but x@-6Y"%0.

Let M(a) denote the space spanned by all the
principal vectors associated with eigenvalues of a .

2.5. Definition. If &€ £ is an eigenvalue of
@ € R then the multiplicity of & is
dim Cla -4 1 .

Using these definitions it is possible to build up
& theory of eigenvalues in continuous rings which paral-
lels that for linear transformations on a finite-dimen-
sional vector space.

2,6, Definition. A regular ring is said to be

X —pegular if there exists an involutory anti-suto-
morphism @ —¥ a* of the ring onto itself, such that

aa* =0 if and only if a = 0 .
I R is % -regular an element @ € R for

which @ = a* is called self-conjugate. Self-conjuga-
te idempotents are called projectjons.

The most basic result concerning ¥ -regular rings

is that every left ideal (a), is generated by a uni=-



quely defined projection Ta , called & left pro-
;]ection._ The term "lattice of projections™ will denote
the lattice of principal left ideals of the * -regu-
lar ring R , where e v f is the projection defi-
ned by (e) v (f), enf the projection defined
by (e) A (£), , and e & f nmeans that (e), £«
£ (£) -

We say that a * -regular ring is gomplete if
the lattice of its projections is complete. A result of
Kaplansky (2] gives the following

2.T7. Theorem. The projections of @& complete irre-
ducible ¥ -pegular ring form a continuous geometry.

From now on we assume R to be a continuous

X -pegular ring. We define an inner product on R by
setting (u, v )= «wv* forall «,veR. aeR
is herpitisp if a = a*, ypitary Iif (wa,va)= («,v)
for all «, v € R | md pormal if ea* - a*a .

Using these definitions we can obtain a theory
of normal, hermitian and unitary elements parallelling
the classical theory in linear transformations. In par-
ticular we get the following results.

2.8, Theorem. Let R  be & continuous * -regu-
lar ring. Then to every normal element @ € R with
Mca) = R there correspond elements £;,8;,.....€ Z
and projections e,, €,,... - such that i) the £
sre pairwise distinct, ii) the €; are pairwise ortho-
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gonal and non-zero, iii) Ze1L =1, v a =
1
- %1&31; .

The representation a = % &, e; is the gpec=
tral form of 2 , and is unique.

2.9. Theorem. If %‘ 4 e, is the spectral form
of 2 € R , then a necessary and sufficient condition
that an element & € R commute with a 1is that it
commute with each e;

If a 1is a normal element with spectral form

% L,e;, end f is a Z -valued function defined at
least at the points 4, € Z , then we define f(a)
by f(a) = .§ FCl ). e .

2,10, Theorem. Two normal elements a and .4 of
a continuous * -regular ring R with M@)=M@)=R,
are commutative if and only if there exi‘st two Z =-valu-
ed functions ¥ and @ defined on Z , the center of

R ,and there also exists a normal element ¢ € R

with M(c)=R such that a = f(c) amd & =g (c) .

2,11, Theorem. If @ is normal with M@h =R,
and 4 commutes with a , then & commutes with oz * .

3. A _model for guantum mechanlcs.

Let o ©be a partially ordered set with an invoiu~
tory antirautomorphism, i.e. a mapping a — a’ of L
onto itself such that a”=a and ay £ @, if and
only £#f a, € a; . We say that a, and a, are

1 2

,
disjoint, end write a, L a, if a < a, .
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a — a’ 1s said to be an gorthocomplementation
if 1) there exists a least upper bound for any countable

set {a,, a,,-...} of elements disjoint in pairs,
written a, v a, V-

i1) awva'=#v &’ for all a, & € L£ (call this
quantity 1 J.

1i1) a £ & implies b =a v (&'va) -

3.1. Definitiop. Say m : L —+ L[ 0,11 is a proba=
bility messure on an orthocomplemented modular lattice
L £ MmM)=4,m1)=0 ad ifa, la; for
i % j then m(q,va,v...)= 2 ma;).

From now on we suppose sl to be isomorphic to the
lattice of projections of a contimuous * -regular ring

R . & 4is orthocomplemented ([10],p.124,prop.89 ).

We have at least one probability measure on L ,
namely the rank function # on R . If e 1is a projec-
tion and /#, is defined by x, (f) = rent)/ xce)
for all projections f , then %, 1s a probability
zmeasure on oL ([111,p.195 ).

3.2. Definitiop. If for some family F  of proba-
bility measures on oL mMm(a,) £ m(a,) for ll me
€ F implies a, £ @, then F 1is seld to be a
full family.

3.3. Legma. The set £ = {r‘tG: e a projection } is
a full family of probability measures on of .

Proof. Obviously /x,(f) =1 1if and onl¥y if e <
4 £, Let K C£,) & n, (f,) for all projections e ,
In particular, £, (£ 4 x (£,), fi.e. 3 (f2)=1.
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Therefore f, &« f, and A is full.

Let (3 denote the set of countable subsets of Z,
the center of R , together with Z itself.

3.4, Defipnitiopg. A function L:E— L. ot B
to L 1is an oL ~-yalued measure if
1) EnF=0¢ implies L L L. -
11) LE,VE’_V... = LE1 v bLg v...  whenever E; n E; =
=¢ for i+ g -
11) Ly=17, Lp=1.

Now let ©  denote the set of all . -valued
measures on (3 , and let m € A . Define n(L,m, E)=
=am(L,) for each triple Le &, me A, Ee B .

We will now show that © , K ,fi possess certain
‘properties (labelled properties 1-6), these properties
being modifications of the axioms for the standard quan—-
tum mechanical model, as proposed by Mackey. We also show
that we can obtain a comparable theory of quantum statics
to the standard theory. Physically, © will be the
"observables” and A the "states",

3.5. Property 1. 1) p(L,m,p)=m(Ly)=m(1)= 0,
for 41 Le ©® and me B, ii) pl(L,m,Z) =

=m(l_1)=zm(4)-’1,for all Le © and m € b .
iitdp (L,m, &J E)= ’"“(Lyz‘ J=am(ULe, )= g_', m (LE‘_ )= %ﬂ(L,m,é)’
for all L e © axﬁrmexs,ifE‘.nEésd) for
it 4.

This says that ,jn (L,mm,) 1s a probability mea-
sure, and physically we understand this +to mean that if



the system is in state »m , the probability that the
observable L  have a value in E is s (L,m, E).
3.6, Broerty 2. i) Let p(L,,m,E)= pn(lL,>m, E)
for allm € 8, E € B . Then m (L, )=m(L,) for all
meA and E€ B . But A 1is a full feamily and the-
refore L, = L,, for all E € B . Therefore L, =
L, -
11) Let p (L,m,E) = n(L,m,, E) for all

Le©,Eed, ie. m (L, )=m,(L,) for all Le
e ® .

3.7. Lemma. Every element of oL is of the form L.

Proof. If a € oL , define L : B — L by
L:E—sa if emdonlyif 1e¢ E, 0 & E .
L:E—a ifandonlyif 1 & E, Oe E .
L:E—>1 ifandonlyir 1€ E, 0 E .
L:E—1 ifendonlyir 1 & E, 0¢ E .

Then L 1is an L =-valued measure and L., = @ .

Hence, using the lemma in ii) above, we get
m, (a)=m,(a) for all a € oL and therefore
m, = mz .

This is interpreted physically by saying that two
different observables have a different probsbility dis-
tribution in some state, and two different states yteld
& different probability distribution for some observable.

3.8, Property 3. Let £ be any function from Z
to Z such that £(E) e B for any E e B , and

suppose L 1s any oL =-valued measure on (3 and



m € A . We wish to show that there exists an ol =
valued measure L* on @3 such that, for any me€
e, Ee B, niL,m,7(EN = p(L*,m,E).

€1
For E e 3 write L, = L, , - Then

Lf*! definea by L g — L‘:’ is an oL -va-
lued measure on U3 as is easily proved. Putting

-1 - £-1
*= 7 we get pn (LF m, E1=m (L)) =m Ly, )=

-11(L,'m,<F’4(E )) for each m € &8 , as required.
This property enables us to consider L", L? 5

L+ Lz, 4-L etc. as observables when L is an obser-

vable.

We no longer express states as convex linear
combinations of other states, and we do not single out
a special class of states as "pur‘e“ (which is what hap=-
pens in the standard model). Our physical interprete~
tion of states is that each state is associated with a
certain class of configurations of the system in that

particular state. If the system is in the state defined
by the projection e , then it is in any other state,
defined by the projection ¥ say, with a certain pro-
bability, namely ~x«, (f) .

3.9, Definition, L € O is a guestion if
n(L,m,{0,13)=1 for all m e B , i.e. if
m (L 43)=1 for all me A .

Suppose L  is a question. Then m (L 4 )= 1 =

=m (1) for all m e A . Since S 1is full this
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implies that L“‘,,, = 1 ., Similarly it can be shown that
L,=1 if {0,173 < E, and L= 1" if En{0,1]=
=6 .
L™ Loos=Lioss =1, and as L is an oL -valued
measure we get L., 1 L, 1.e. if L., = a, then L%
£ a’. From the definition of orthocomplementation
this means @’ = Ly Vv (@ v (Lgoy )= Loy Vv 17 = Lo
(since Lj,, = 1 eadso Ly =217 ).
Define the functiom 41 -L: 0 — oL for L €
e © , sending E € B to (1-L) € oL, by (1-L)=

= L‘_,(n ,where f(x)=1- X .
From the discussion on Property 3 we deduce that this is
en oL -valued measure on 43 . Then p (1-L,m,E) =

:m(C'I—L)E)-m(Lz.,(E,)"f'-(L,ﬂn,f"'(E)) . Therefore
p1-L,m,{0,13)= n(L,m,{0,13) , and we deduce that

4 - L 1is a question if and only if L  is.

r L,, Lz are questions we write L, < Lz if
and only if m (L, ) £ m (L, ) for all me 5 .
It is easily proved that this defines a partial ordering
on the questions.

We say that questions L ,, L, are disioint and
write L1 1 L, if and only if L1 £ 1-L, (or equi-
valently, if and only 3f m (L )+ m (L, ) £ 1,
for all m e A ),

We say that a question L  is the gum, written
L=1L+L,+..., of disjoint questions L.1 9 gy eee s

if m (L“‘ Y=m (L

acag ) Fm by )+ ... for all me b,
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Such a sum, if it exists, is unique.

3.10. Property 4. I L ,, L,,--- are questions,
and L; L L;; foar i % j , then there exists a ques—
tion L such that L = L + L, +... .

Ppoof. L; L Ly for 4 # 4 1if and only if
L; £1-L; for i % j, and by definition of <
this means m (L. .) £ 1-m(L;n;) for all m €
€A end for i % 7 . Now LIH” v Ly =1, 3=
=1,2,... and m, by the definition of probability mea-
sure on L we get m (L[, )=1-m (Ljy), 3=1,2,-.-
and therefore m (L., ) £m (L;y, ) for all me5 ,

i,3=1,2,...,i%F.S4nce 5 1is full we deduce that

Licas £ Loy for i+ 4, 1ee. L, L Ly for
i G

Since oL 1is complete, £ = J/ L, . exists. Let
us define on the sets E € 43  a function L with
range in L by
L:E—& srendaonlysir 1€ E, 0 ¢ E.
L:E—> ¢ 4if and only ifr 4 ¢ E, O€ E.
L:E—1 ifendonlyir 1€ E, O€ E.

L:E—> 41 ifandonlyir 1¢ E, 0 ¢ E.

It is easily seen that L defined above is a ques~-
tion. Using this L. , and the definition of probability
measure in of , we Bet m (Lyy)=m(YL, = T m(l; ),
i.e. L 1is the sum of the disjoint questiona L,,,Lz,... .

Example. If E € 3 and @; 1s the characteris-
" tic function of E , then the observable @ (L)= G, ,
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far any given L € © , is a question, since, by defini-
tion, ,ﬂ,CG:,rm, F)= n(L,m,Q:(F)) for all me A
and F € d3 ; and therefore ,n(a:,rm, {0,13) =
=pn(L,m,Q" ({0,130 = pL,m, 2) =1 .

3.11. Lemma. If L € © is fixed, then the set
{Q:; Ee B3 is a family of questions determining L

uniquely.

Proof. Suppose that Q‘; = Q‘;:' for all E € 03 .
Then for all m € A and Fe B  we have

PO ,m,F)=n(QS,m,F) . Therefore p(L,m,q; (F)=

= p(Lym,Q(F)) forallmeb,E, Fed.
In particular, f(L,m,Q;'(13) = n (L, m, G €13))
for all m e S5 and E € /3 . This implies that
p(L,m, E)= (L, m,E) for all m and E , and hen-
ce that L = L7 .

3.12. Definition. Let 4  denote the set of all
questions. Then a function ¢ : E — g from @3 to
Q  vhich satisfies 1) E N F = ¢ implies g, L Qr >
ii») E;nEi=¢ far i 4 j implies Qe = ¥ Le; -
111) =0, gz = 1 is called a guestion-valued measure.

The function @f : E —» @} is otviously a
question-valued measure, and in lemma 3.1l we showed that
each observable is uniquely determined by @G, , i.e.
there exists a one to one correspondence between the ob—

servables and certain question-valued measures.

3.13. Broperty 9. Property 5 says that we can eli-
minate the word "certain™ above. That is, if we are given
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a function ¢ : E — Qe with g a question-valued
measure on d to @A , then there exists L € ©
such that ¢, = Q% for all E € 743 .

From Property 2 i) we need only show that there
exists an L € © such that for all Fe 3, m €8
and for the given ¢, n(g.,m,F)= (g, m, F) .
As g¢., BF  are questions it is sufficient to show
equality for F = {13}, i.e. we need only show
1@, m,{13)= n (AL, m,$13)= p(Lm,G{1)=p(L,m,E) for
some L € ©. We take L = @; and show that this is
the required L .

I 1eE our requirement can be written as

1 (G M AN + (@435 ™M 1 113) = 12.0q 443, M, 113)+ 12 (@ gy, E-117)

or @8 (G g0 My{13) = (Qeyy ™M, E-{13) ., 1£ 1 ¢ E
we have to prove n(q.,m,{13) = »nl(qm,,m, E) . Hen-
ce it is sufficient to prove the following

3.14, Lemmg. If @ 1is a question-valued measure
then nlq.,m,F)= pnig,.,m,E) for all m & A,
and for all disjoint E, F e & .

Broof. 2 (qe,m E v F)+ 2Qeyr,m,F)=n(ge,m E)+

@ m, Flr-ngg,m, F)+ pQe,m, F=ng m,Ev F). Subtmcting
1 Qg,r,m,F) from the first and last terms above gives
t(Qe;m,EvF)= nn(qc .,m, E) and subtracting
f(gg,m,E) from both sides of this gives f1(q.,”, F)=

= 'ﬂ(‘l,;a'm; E) .
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3.15. Theoreg. The mapping L —> L“, is &
one to one, order-preserving mapping of the questions
of the system onto such that if @ — L , then
a’— 1-L .
Prpof. We have seen in our discussion of questions

that &f L is a question amd L, = a , then

1- L)m‘ a.', and so the mapping L — L, s

tisfies the last requirement of the theorem.

Let L,, L, Dbe questions with L, <« L, ,
i.e. m(L ) £ m (L )

<13 2043 for all m € A , Sin-
ce A s full this means that L, . < L, in KL

8o we have order=-preservation.

Let a € of , and define the function L : /3 -
— [ by

L:E—>a ifendonlyirt 1¢ E, 0 ¢ E.
L:E—s>a’ ifandaonlyir 1¢ E, 0€ E.
L:E—>41 ifamdaonlyir 1€ £E, Oe E.
L:E-— 4 ifendaonlyir 1 & E, 0 & E.

We have already seen that such a function is & question,

amd L= a . Therefore the mapping L — L, 1is
onto.

The mapping is also one to one, for if L, . =L, .
then m(L, )= m(L,,, ) for all m ¢ A, or
nll,m,{13) = n(L, m, {13 )

ce L, , L,

for all m € 4 . Sin-

are questions we deduce that
pl,mE)= (L, m, E) for all me £ and all
E € A& . From Property 2 i) we thenget L, 6 = L, .
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3.16. Definition. Let L,, L, ¢ @ . Ve say
that L, and L, are simultapeously smawerable if
there exists an observable A and E,, E, € 3 such
that L, = 0.':1 ) by= Qﬁl . Observables A and B
are gimltanecusly observable if @, Q.  are simul-
taneously answerable for all pairs E, Fe # .

Suppose that A, B € O and that there exists
a C €O and functions f and g from Z to
Z , such that A= () amd B = g(C).Then it is

A £0c; B (]
easy to show that @, = @, g :-4(5) amd G, = Q:‘ -

= d::’m , md hence that A and B are simulta-
necusly observable.
We know that each observable defines and is defi-
ned ty & question-valued measure on d3 (lemma 3.11).
Since the questions are isomorphic to the lattice of pro=
jections on the ring, the observables must be isomarphie
to the projection-valued measures on /3 .
, 3.17. Lepma. The projection-valued measures on J3
are in one to one corresponience with those elements of
the ring which have a spectral form.
Proof. Let m be a projection-valued measure on
A. I A, @ are arbitrary members of Z  then

m(A)= e, &ad m (e ) =e, ,say, where e e

Ar =
are projections. Since m 1is a megsure we deduce that
if A # @« then e’a'L e#.Althouth may be
uncountable only a countable number of non-zero idempo-
tents defined in this way can exist ([12]1,p.119 ). Let

these idempctents be e,, €,,.... with &, =m(A,).
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Form a = ; A; € -

A secord projection-valued measure yield a diffe-
rent projection to that given by the first measure for
some A € Z and hence yields a different spectral
form.

Now we see that each spectral form arises from a
projection-valued measure in the following manner: given
& spectral form a = X A e; where A; € £
i1=1,2,..... define m, on /3 as follows. If

where JL,;é € Enin,,Ay,.... 1.

Ee A ,m,,(E)-Zeii ,
Then m, 1s certainly & projection-valued measure on 03,
m, ()= e ,t=1,2..,6 o0 (T)=0 for = ¢
¢{A,,A5,-- 3, and fmw—-)ga‘- e, under the map-

ping mentioned in the first part of the proof.

We therefore have a one to one correspondence be~-
tween the projection-valued measures and the ring ele-
ments with a spectral form. Hence the observables are in
one to one corrupondeﬁce with the ring elemets with a
spectral form.

Let o € R have a spectral form, 4, € A, e
E e /3 . To determine the probability that in the state
defined by € , & measurement of the observable defined
by a will yleld = value in E , we first of all take
the projection=valued measure 41-“' associated with

by the spectral theorem. »ft: is then the projection
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associated with the question "does the value of the ob-
servable defined by @ lie in £ 7" The required pro-

bability is #x, (117 ) -
let e be a projection and a principal vector of

degree 1 of @ , corresponding to the eigenvalue A .

Then e £ fg,; &nd so we get ' (frns) = 1.
Conversely, suppose %, (ﬂfu )=4 ., Then e -‘-"f":.'u

and so ea =e , il.e. e is a principal vector of

of degree 1 , corresponding to the eigenvalue A .
If @ and & have spectral forms then @ and &

a

commute if and only if 12 fi=p g2 for all E ,
F e 03 (theorem 2.9). Also, if a and 4 commte,

we know that there exists an element ¢ € R with spec-

tral form, and functions f and- ¢ such that @ = f(c)

and & = g (c) (theorm2.10). Thus @ and & are si-

multaneously observable.
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