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Comment at i ones Mathematicae Universitatis Carolinae 

10,2 (1969) 

A CONTINUOUS GEOMETRY AS A MATHEMATICAL MODEL FOR 

QUANTUM MECHANICS 

Christopher J. DUCKEHFIELD, &TOERS, Conn.. 

Introduction. The usual as3ertions of quantum mecha-

nica are that observablea are aelf-adjoint operatora in 

Hilbert apace, atates are vectors in this space, and the 

expectation value of an obaervable A in the state "Sf 

is ( AUC 7 V) . The "pure" statea are aasociated with 

unit vectors (i.e. "points") in the Hilbert space» G. 

Mackey [1] has produced a set of axioms for the standard 

model for quantum mechanics which gives a mathematical 

theory in accordance with the above as3ertions. The spec 

tral theory for operators on a Hilbert space plays a vi­

tal role in this analysi9. 

Thi3 theory is developed from the basic assumption 

that underlying every physical system is an orthocomple-

mented lattice, namely the lattice of experimentally ve­

rifiable propositions about the system. This lattice is 

called the "logic" of the system. In the case of classi­

cal mechanics the logic is a Boolean algebra, the dist-

ributivity corresponding to the fact that all observa-

bles are simultaneously meaaurable. However, in the case 

of quantum mechanics the distributivity is lo9t, since 
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observables exist which are not simultaneously measur­

able. In the standard model, where we assume the logic 

to be isomorphic to the lattice of closed subspaces of 

an infinite-dimensional, separable Hilbert space, the 

lattice is not even modular. Modularity would imply that 

the lattice was a continuous geometry [2 J and all the 

desirable properties of Hilbert space, in particular the 

spectral theory for operators on it, existence of "points", 

and the well-established theory of Hilbert spaces, are 

lost. Consequently, a model for quantum mechanics with 

any physical relevance based on a continuous geometry has 

never been produced. However, a spectral theory for ele­

ments in a continuous ring has recently been developed 

[3J and we attempt to replace the Hilbert space of the 

standard model by a particular kind of continuous ring. 

Continuous rings arise in connection with the continuous 

geometries of von Neumann (sea [43-[91), and if R is 

a continuous ring it is associated with a continuous geo­

metry, namely the lattice of its principal left ideals 

[9J. If R replaces the Hilbert space in the model, 

then the logic of the system is the continuous geometry 

associated with R • 

i . <}QnUmm§ ftg9i<?tr;te9 gn<? rgfflJrflr rim§t 

A continuous geometry is a complete, complemented, 

modular, irreducible lattice satisfying two continuity 

conditions and which admits infinite chains. 



!•--• Definition* An associative ring R with a 

unit i s regular i f <xxa, » Ct, i s solvable in R for 

a l l a, e R • 

If L i s a continuous geometry with homogeneous 

basia of order £- 4- then there exis ts a regular ring 

R t called the co-ordinate ring of L , such that 

L and the la t t i ce of a l l principal l e f t ideals in R 

are isomorphic. It i s possible to <fefine a unique dimen­

sion function "dim" on the l a t t i c e , which in turn makes 

i t possible to define a unique rank function ft on the 

co-ordinate ring, by setting /t(cu)*• dlnm((a>e)) for a, €. 

e R . The range of /c i s the closed interval C 0, 11 , 

and the ring i s irreducible and also complete in the rank 

metric CT(CL, Jb> ) **. H, (cu-Jlr} . A complete, regular, 

irreducible rank ring i s called a continuous ring and i t 

can be proved that the la t t i ce of principal l e f t ideals 

of such a ring i s a continuous geometry. There i s there­

fore a one to one correspondence between continuous geo­

metries and continuous rings* 

We wi l l need the following properties of regular 

rings (proved in [103). 

I*2* Sfoeorem* For an associative ring R with a 

unit the following are equivalent* 

i ) R i s regular* 

11) Every principal l e f t ideal i s generated by a unique 

idempotent* 

i i i ) The principal l e f t ideals of R form m complemented 



sublattice of a l l the le f t ideals of R • 

iv) Every principal l e f t ideal of R has a complement 

in the la t t i ce of a l l l e f t ideals . 

1.3. Theorem, i ) If R i s the union of a f i n i t e 

set of principal l e f t ideals { (cu^\ •' * « 4, 2? • * * 7 'W- f 

then there exists a unique col lection of idempotents 

fc-M«*>••'**<* such that (ct>t\= (e^, e^+ + 

+ e^ * 4 a n d eie-*m 0 to? i - ! - i- ' 

i i ) e*-=r € implies <e£«. f 4 - e)^ and Ce )f « 

i i i ) (afe
em Ca\ and (cu)^ m (a\ for a l l a e R . 

iv) The mapping (^)^ —• ^ J / i s a la t t i ce ant i -

isomorphism of the la t t i ce of principal le f t ideals of 

R onto the la t t i ce of principal right ideals , 

v) If (e\ i s a right ideal and e1 » e 7 then e 

i s central. 

v i ) The center Z of a regular ring is also regular, 

v i i ) R i s irreducible i f and only i f the center i s a 

f i e l d . 

2. fiteenvaluea jlp cp^UnuQua rfrnKg. 

R n i l l denote a continuous ring, 2 i t s center 

and X the rank function on R • 

The results of th is section are proved in E3J. 
2»--» Definition. Let a, e R . Then an element ire 

e R i s said to be an eigenvalue of a i f and only 

f f i r e Z and n.(a-Jb') <c 4 , 

We can prove 



2 .2 . Lejgmg* There are only a countable number of 

irreducible, monic, a-singular ( i . e . /t Cfz, Co, )1 <: 4 ) 

polynomials f t Cx) with coefficients in Z • 

Hence we immediately get 

2 . 3 . Theorem. Let a e. R . Then a, has only a 

countable number of eigenvalues. 
2 * 4 . Definition. * s R i s a principal vector 

of degree My corresponding to the eigenvalue J!r of 

co , i f j c t o - - ^ ) * ' - 0 but x Co, - - 4 - ) * " ' * <? . 

Let M Co/) denote the space spanned by a l l the 

principal vectors associated with eigenvalues of Q, . 
2«5* Definition. If Jlr s Z i s an eigenvalue of 

a £ R then the multip l icity of Sr i s 

c&-n, CCa-ir)^ J „ 

Using these definitions i t i s possible to build up 

a theory of eigenvalues in continuous rings which paral­

l e l s that for linear transformations on a finite-dimen­

sional vector space. 

2 .6 . Definition. A regular ring i s said to be 

* -regular i f there ex is ts an involutory anti-auto­

morphism a, —V a,* ot the ring onto i t s e l f , such that 

a<a>* -«r 0 i f and only i f a, «• 0 . 

If R i s ** -regular an element a, e R for 

which O/ =s a,* i s called a elf-conjugate. Self-conjuga­

te idempotents are called pro.1ectj.ona. 

The most basic result concerning <* -regular rings 

i s that every le f t ideal Ca,)^ i s generated by a uni-



quely defined projection ^ia' .» called m left pro­

jection. The term "lattice of projections* will denote 

the lattice of principal left ideals of the * -regu­

lar ring R , where e v f is the projection defi­

ned by (e\ v ($\, e A f the projection defined 

by Ce) t A (4)t , and e £ f means that (e\ 4s 

* C*\ • 

We say that a * -regular ring i s complete i f 

the lat t ice of i t s projections i s complete. A result of 

Kaplansky [2>] gives the following 

2 .7 . Theorem* The projections of & complete imse-

ducible * -regular ring form a continuous geometry. 

From now on we assume R to be a continuous 

* -regular ring. We define an inner product on R by 

setting (u,7 v )m ww* for a l l z£, <v e. R , cu e R 

i s hermitian i f a, m a * 9 inltfffifT ** (u,a, f<i>-a,)~ C^v) 

for a l l /a , IT* e R , and normal i f CLO,* m aPa* • 

Using these definitions we can obtain a theory 

of normal, hermitian and unitary elements parallelling 

the classical theory in linear transformations. In par­

ticular we get the following resul ts . 

2 . 8 . Theorem. Let R be as continuous *-regu­

lar ring. Then to every normal element ct e R. with 

MCO/)-» R there correspond elements -#v,<#i, ^ H 

and projections a^, ez7*" ' 8 U C h t h a t i^ t h e ^* 

are pairwise dis t inct , l i ) the e+ are pairwise ortho-
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gonal and non-zero, i i i ) l e , -» - / , iv) a, » 

- J*,., . 
The representat ion a* -* X -£5 ^ i s the spec­

t r a l form of a, , and i s unique. 

2 # 9. Theorem. If -£-<#; s- i s the spec t ra l form 

of at, e R , then a necessary and suff ic ient condition 

t h a t an element > e R commute with a, i s tha t i t 

commute with each e . • **» 
If a, i s a normal element with spect ra l form 

-S Ac &j, and f i s a Z -valued function defined a t 

l e a s t at the points J% c 2 9 then we define i (&) 

by -PCa) m 7L f Cij ) . e. , 

2.10, Theorem. Two normal elements a, and .^ of 

a continuous * -regular r ing R with M (a,)* M(b)ss R, 

are commutative if and only i f there exist two 2 -va lu-

ed functions f and 9. defined on H f the center of 

R ,and there also ex is t s a normal element c e R 

with M C c ) = R such that a^i(c) and ir^q^(c) 

2»H» Theorem, If a i s normal with M (of) ** R , 

and ir* commutes with a , then Jtr commutes with a,** « 

3 . A np^el for gua^um, mschajAco* 

Let tC be a p a r t i a l l y ordered set with an involu-

tory anti^automorphism, i . e . a> mapping' a> —* a/ of X, 

onto i t8e l f such that a," -= a, and a^ ^ a 2 i f and 

only $f o^ £ a<! * We say tha t a^ and o^ are 

fliajplat, and write a,A L a,% i f <*t * a* • 
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a, -* cJ i s said to be an orthocomplementation 

i f i ) there exists a least upper bound for any countable 

set {o^ , o^, -. - - ? of elements disjoint in pairs, 

written a^ v a,2 v » * 

i i ) a v a/=Arv Jlr' for a l l a,, & e X (cal l this 

quantity v ) • 

i i i ) a, & Jr implies? Jlr* a, v Cir'V a,)' -

3»1« Definition* Say /.*& : «C -* C 0, 4 .7 i s a proba­

b i l i t y measure on an orthocomplemented modular l a t t i e e 

X i f /w* C4>» 4 , and')** 0 , and i f cu -L a - for 

i * j then *rt Co.., v a ^ v . , , , ) * ^ ^ ^ * ) # 

Prom now on we suppose X to be isomorphic to th& 

la t t i ce of projections of a continuous * -regular ring 

R * X i s orthocomplemented CflOJ >p.l24,prop.89 ) . 

We have at least one probability measure on JZ , 

namely the rank function /c on R • If e i s a projec­

t ion and H,e i s defined by /ve ($) am /t(e/\f)//t(e) 

for a l l projections -f , then fte i s a probability 

measure on X (£113,p.195 )• 

3.2• Definitlon> If for some family ? of proba­

b i l i t y measures on X rm(a,A ) & /m,Cczz) for a l l /m. e 

e 3- impliea a,^ -6 a,z then 3̂  i s said to be a 

f u l l family. 

3»3» Lejoaaa. T n e 9e* ^x i \ : e « projection! is 
a f u l l family of probability measures on X * 

Proofs Obviously /t^ C-f ) ** 1 i f and only i f e & 

& -f . Let H,e (^ ) & \ ^ \ ^ for a 1 1 Projections e • 

In particular, n,4 Ci^ ) £ /t4 (fz ) , i . e . fy C-fx) m 4 . 
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Therefore f, --- $% and .4 i s f u l l . 

Let tfj denote the set of countable subsets of £, ' 

the center of R , together with 2 i t s e l f . 

3 .4 . Definition. A function L ; E -+ L £ of (fh 

to X i s an i -valued measure i f 

i ) E n F - 4> implies LE X L p . 

i i ) l-£ v/£ v == LF v Le v . , . whenever E. n E. *-

-* 4> for i 4* 3. * 

ui) L^= r , LZ - i . 

Now le t 0 denote the set of a l l X -valued 

measures on (fb , and let /m. e /& • Define jt ( L , nm,y E) « 

»^n( Lg ) for each tr ip le L & & , <m c A> , E e <fb • 

We wi l l now show that 0 , & pf1 possess certain 

properties (labelled properties 1-6), these properties 

being modifications of the axioms for the standard quan­

tum mechanical model, as proposed by Mackey. We also show 

that we can obtain a comparable theory of quantum stat ics 

to the standard theory. Physically, 0 wi l l be the 

"observables" and A the "states". 

3 . 5 . Property 1. 1)^(L^mv,^)^nnCL^)^<m(4')*> 0 , 

for a l l L e 0 and mz e £> , i i ) ^t(L1mtfZ) « 

a / tu (L l )»/7n.( / l )*1 ; for a l l L € & and nrrt e A* . 

iii)>ft (L,m, y £)« nrv(L^^ y^nnOJLg,)« ^ m% (LE, )n^.fi(L<mfE4\ 

for a l l L e 9 and mt e J> , i f Ei n E^ - 0 for 

This says that .-p, C L , nmt) i s a probability mea­

sure, and physically we understand this to mean that i f 



the system is in state nrrt , the probability that the 

observable L have a value in E i s >ft TL,/m,7 E ) . 

3 .6 . Brora rt.v 2 . i ) Let ^(L^srrt, £)-=. ftCL1,n7i, B ) 

for a l l rm e /%, E e (ft . Then <m (L1£ )-r mtC^ ) for a l l 

rttt e & and E e c8 , But •& is a fu l l family and the­

refore L1E « L2E for a l l E € .6 . Therefore L1 -=• 

*L 2 -

i i ) Let ^iCLj/m^E) - ^ 0-,/m^, E ) for a l l 

L e 0 , E e c/3 , i . e . nm^ ( L£ ) =- an2 C Le ) for a l l L e 

e 0 . 

3 . 7 . Lejomja* Every element of X i s of the form L . 

Proof. It a, e £ 9 define L J ^ - > £ by 

L ; £ —v CL i f and only i f 4 e £ , 0 £ £ . 

L s £ —¥ cJ i f and only i f 4 £ E , 0 e E . 

L ; £ ~* 1 i f and only i f 1 e E , 0 e E . 

L i £ —• y i f and only i f 1 4- E , 0 # £ . 

Then L i s an X -valued measure and L^j *• <st • 

Hence, using the lemma in i i ) above, we get 

nm Ccv)= mn Co,) for a l l cve.cC and therefore 

This ia interpreted phyaically by saying that two 

different observables have a different probability d is ­

tribution in some state , and two different atates yield 

s different probability diatribution for 8ome observable. 

3#8. Property .3. Let -f be any function from Z 

to Z auch that t~*CE.) e <Sb for any E e (3 , and 

suppose L i s any «£ -valued measure on (73 and 



tri C /& . We wish to show that there ex i s t s an <X. -

valued measure L* on fli such tha t , for any {me 

e 4 , £ 6 !J37 ^ C L ^ ^ ^ C E ) ) - : fi(L*,<rrv, £> * 

For E e <R> write Lg"f =- L f . ^ E ) , Then 

L f"' defined by L*"'; £ —> L*e"' i s an X -va­

lued measure on d& as i s eas i ly proved. Putting 

L* = L?"1 we get fi C \J"\ <rrij £ )-= «*> (L%1) - mt CLr<a) U 

»yfiCL/fnf^"iCB)) for each nm e ;& , as required. 

This property enables us to consider Lz, L? , 

L+ L , 4 - L e t c . as observables when L i s an obser­

vable. 

We no longer express s t a t e s as convex l inear 

combinations of other s t a t e s , and we do not single out 

a special c lass of s t a t e s as "pure" (which i s what hap­

pens in the standard model). Our physical in terpre ta» 

t ion of s t a t e s i s that each s ta te i s associated with a 

cer ta in class of configurations of the system in that 

par t icu la r s t a t e . If the system i s in the s t a t e defined 

by the project ion e , then i t i s in any other s t a t e , 

defined by the projection f say, with a ce r t a in pro­

bab i l i t y , namely * e Cf ) . 

3 .9 . Definit ion. L e & i s a question i f 

^ CL,,m,{07 4 J)-* /\ f or a l l ^nt e &̂ , i . e . i f 

t m C L ^ j )= 4 for a l l nntx e A> * 

Suppose L i s a question. Then nn (LiMj) ^ 4 -. 

» «m C1) for a l l nrv e A> . Since A> i s f u l l t h i s 
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Implies that '-<«,<, = 4 . Similarly it can be shown that 

Le - 1 if <0, 11 £ E , and L e = 4' If E ̂ . .0,4J = 

- $ . 

L^ 3 v L<0|= L^,fj m 1 , and as L i s an X -valued 

measure we get L<<fJ .X L ^ j i . e . i f L<<fj » a. 7 then L^-^ 

-s a / • From the definition of orthocomplementation 

th i s means a / - L<oi v (a, v C L<c?l ))'=. L^, v V « L<(7, 

(since L<0J -= 4 and so L w ^ 4 ' ) . 

Define the function i - L ; 03 —>- X for L e 

e 6 , sending E e <T3 to C1 - L \ e X , by (1 - L)£-= 

* L f f where -f C»x ) = 1 - X * 

From the discussion on Property 3 we deduce that this i s 

an X -valued measure on (ft • Then jq, C4- L , <nt7 E ) -» 

»/m,CH-Ly«/mCL4.,f£^ . Therefore 

p.(1--Lf/m,9{0f4})m fid-f<m,i074 }) 7 and we deduce that 

4 - L i s a question i f and only if L i s . 

If L 1 ? L £ are questions we write L^ 6 L± i f 

and only i f mt C L^^ ) -- a ( L*<4i ) ^cr a 1 1 in. tf /*& . 

It i s easi ly proved that this defines a partial ordering 

on the questions* 

We say that questions L t , L 2 are die.jqii.rt a n d 

write ^ 1 ^ i f and only ±f L1 -= A - --2 (or equi-

valently, i f and only i f an ( L^ui )-f- rm(Li<4i ) £ 4 , 

for a l l /m. e. A> )m 

We say that a question L i s the a urn, written 

L -» L^+ L^+... , of disjoint questions L 1 , Lm%1 . . . , 

i f /m C L(H ) » fm(L^u% ) +m CLa<4t )+ , , , for a l l <m € A> . 
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Such a sum, i f i t ex i s t s , i s unique. 

3 .10. Property 4. If L,,, L a , . . . are questions, 

and L^ X L^ * for i 4- £> 7 then there ex i s t s a ques­

t ion L such that L -» L̂  -*• L^ -*-... . 

Proof. L^ X LJ; for i -j- ^ i f and only i f 

L- --* 4 - L ;̂ for -i ± g, 9 ana by definiti on of «-• 

this means mt (\^^%) &. 4 - /m Cl-^^j ) far a l l /m. € 

<f .^ and for i * g. . JTow/ L<<<fJ v L ^ f » f , ^ » 

* 'I, 2 , . . . and so , by the definition of probability mea­

sure on oC we get /m(L^ii$)» 4 -rm, (L^<iS ), j , » f, 2 , -. • 

and therefore /m, d-mi ) - in C L ^ , ) for a l l /m e •£> , 

- i , ^ * A, 2 , . , . , i4^' .S ince •& i s f u l l we deduce that 

LU*t * LJ<1f f O r * * ^ , ! • • • k < i | -J- 4 " i f 0 P 

Since X i s complete, Jir m L^ Luii e x i s * s « J** 

us define on the sets E e 0$ a function L with 

range in X by 

L : E -» > i f and only i f 4 e E , 0 * £ . 

L : E --> > ' i f and only i f A 4 E , 0 e £ . 

L •. E —• 1 i f and only i f 4 e £ , 0 € £ . 

L : £ - M ' i f and only i f 1 # £ , 0 * £ . 

It i s easi ly seen that L defined above i s a ques­

t ion. Using this L , and the definition of probability 

measure in X , we get/m,(Lm)m/m(i^L4<i%)» | L / m f L ^ , ) , 

i . e . L is the sum of the disjoint questions L , L f..* . 

Example. If & e (ft and <26 i s the characteris­

t i c function of E • then the observable Qg(L)m (3g ; 
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for any g iven L e 0 , i s a ques t ion , s i n c e , by d e f i n i ­

t i o n , {L (C^., nn, F) =: p,CL,<ni,Q'£ (F)) for a l l cme & 

and F e ft 5 and therefore sft C(3g , an 0 (0, 1 j ) =-

-» ^t(L,an7Q'E
1 ({0, 4? )) - jfiCLjmi, Z) m 4 , 

3 .11* l^ejsiS* I f L € (3 i s f i x e d , then the s e t 

{QL $ E e fo 3 i s a family of quest ions determining L 

uniquely . 

Proof. Suppose that QL
E - Qg' for a l l E £ 03 . 

Then for a l l nttu e. A and F e <8 we have 

/ i C a ^ ^ F J - r ^ C Q ^ / m . ^ F ) # Therefore fiCL,/rn, Q^CF))** 

* fi,(L',sm7 fr* (F)) f o r a l l nne A, E , F<£ ft . 

In p a r t i c u l a r , ^ ( L , / m , , Q^C-MP) « *fifL',/m, Q^C-C-ll ) ) 

f o r a l l TM 6 •& and E e (ft . This imp l ies that 

pCL,<m, £ ) = sfi(L',<m,, £ ) f o r a l l /wi and E , and hen­

ce that L m L' , 

3 . 1 2 . D e f i n i t i o n . Let A denote the se t of a l l 

ques t ions . Then a funct ion £ : E —• g e from c/3 t o 

& which s a t i s f i e s i ) £ n F » (J> i m p l i e s £ g -1 £ F > 

i i ) E4 n Ej - <J> tw -i + y. imp l i e s ft^£. -= £ £ £ . , 

i i i ) fy * 0 , 2» - 1 5 i» ca l l ed a ques^on-valuefl pe^sure. 

The funct ion (J0 : E —-* Qff i s ottfiously s 

question-valued measure, and i n lemma 3 .11 we showed that 

each observable i s uniquely determined by Qn , i . e . 

there e x i s t s a one t o one correspondence between the ob— 

servab l e s and c e r t a i n question-valued measures. 

3 . 1 3 . .Property 5. Property 5 says that we can e l i ­

minate the word "certain** above* That i s , I f we are g iven 
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a function £ ? £ —> £ £ with £ a question-valued 

measure on (Ji to d , then there ex i s t s L e O 

such that %E » Q^ for a l l £ £ <# • 

From Property 2 i ) we need only show that there 

exists an L e 0 such that for a l l F e dl , nm £ <& 

and for the given £ , P>(<Ze, <"i<, F) * tf> (&i t <™-? F > • 

As <£e , fig are questions i t i s sufficient to show 

equality for F =• {1} f i .e* we need only show 

fi(<fc,m9{4\)=fi(Qfc,m}{4i)*fi(Lfm,Q^^ for 

some L 6 O . We take L - g</f? and show that th is i s 

the required L • 

If 1 e £ our requirement can be written as 

or as ^Cq,e^§,m,{4nmfiC%<ii,'in,E-{4J) . It 1 $ E 

we have to prove <ft£&£,<m,{4\ ) .=* f^C^j-^ .a7 £ ) , Hen­

ce i t i s sufficient to prove the following 

3«14» Lejoua* -C-" 2, i s a question-valued measure 

then ft (<iE , em,, F) =r fify?,*™,, £ ) for a l l lm e A , 

and for a l l disjoint £ , F € & * 

Proof,, fi (%e,/m,Ev F)+fi(ciUy¥,m,F)=fi(<is,<rn>, E) + 

+V>(clv<m'->F)+-ii(Zsi<m,,F)+fi(4f:,'rn7f^p-ty^r,m,£vf), SufrtBactins 

^ ^ V F - ^ J F . ) from the f i r s t and last terms above gives 

ft(ci£,tm,E\/F)sz fi(%SyP,an, E) 9 and subtracting 

I ^ S e t ^ E ) from both sides of th is gives >p>(9,B,'rrtt F > * 
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9 

3«i5» Theorem. The mapping L —* L^- i s a 

one to one| order-preserving mapping of the questions 

of the system onto such that i f a, —* L , then 

0 / - > A- L . 

Proof* We have seen in our discussion of questions 

that i f L i s a question and L<4J .» ct ; then 

( A - L)^-* CL f and sa the mapping L —» Li>fJ 

tiafieff the last requirement of the theorem. 

Let L1 , Lz be questions with L1 -& Lx 

i . e . nm C L i</f | ) f=r /m, £L1</f| ) for a l l mn e A> . Sin­

ce ^ is f u l l this means that L,_., £ L ^ . , in X 
• f i l l K ' H 

so we have order-preservation. 

Let a e <£ j and define the function L ; <fi -* 

-» X by 

L : E ~* a i f and only i f A e E , 0 # £ . 

L ; E - * a/ i f and only i f 1 # E , 0 e E . 

L : £ -+ 4 i f and only i f 1 e £ , 0 € E . 

L ; E ~* 4' i f and only i f A $ E , 0 # £ . 

We have already seen that such a function i s & question, 

and L^j -= a . Therefore the mapping L —* L^j i s 

onto* 

The mapping i s also one to one, for i f L ^ - La{fJ 

then tmCL^ ) = smCL2<J1i) for a l l /m- e / i , or 

fiCLi7m,{Ai) m fi(Li7nn,<AJ ) for a l l <m. 6 ^ # Sin­

ce L 1 1 L 2 are questions we deduce that 

>fi(L^m1 E) » #,( L%7 trn1 £ ) for a l l mi e £ and a l l 

E 6 db • Prom Property £ i ) we then get L^ m Lz . 
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3.16. Defl.imi.Qn. *** L,,, Lx c d . Ve aay 

that L1 and L 2 are gjmul^a^o^ij.l.f a^wera^je. i f 

there exists an observable A and £- , E± e </3 such 

that L - ftt > L * 6L . Observable* A and 3 

are ftjmultai^ouj]l,y observ-aW-a ** Gf , ^p **<» simul­

taneously answerable for a l l pairs £ , F ^ <̂  -

Suppose that A7 B € O and that there ex i s t s 

a C € 0 and functions f and g. from H to 

2 , such that A - f CC > and B - fl-fO . Then i t i s 

easy to show that Q£ » Qe « £^.4(ff} «-d t*F - WF -

-=- 4 .^fF) , and hence that A and B are simulta­

neously observable. 

We know that each observable defines and i s def i ­

ned by m question-valued measure on di (lemma 3 .11) . 

Since the questions are isomorphic to the la t t i ce of pro­

jections on the ring, the observables must be isomorphic 

to the projection-valued measures on d3 • 

3 .17. Lejsffl§. The projection-valued measures on $i 

are in one to one correspondence with those element a of 

the ring which have a spectral form. 

Proof. Let tm be a projection-valued measure on 

& • If A, 9 (U, are arbitrary members of Z then 

/m C(\)ss ex and ^ ^ p ) « e j U , say, where e ^ , e^ 

are projections. Since an i s a measure we deduce that 

i f a * (U, then e^ X e^ . Although Z may be 

uncountable only a countable number of non-zero idempo-

tents defined in th is way can exist (El21,p.l l9 ) . Let 

these idempotenta be e i t , e ^ , , . . - with £>.. m/m((K^)* 
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Form a, -» I ^ e ( • 

A second projection-valued measure yield a d i f fe ­

rent projection to that given by the f i rs t measure for 

some A e 2. and hence yie lds a different speetral 

form* 

Now we see that each spectral form arises from a 

projection-valued measure in the following manners given 

a. spectral form a, ~ 2 . X. e • where X• e -£ > 

-t a 1,2...... define /wz on ^? as follows* If 

£ € £ , "%,CE)mZe^ , w h e r e a s £ 0 * ^ , ^ , — i . 

Then rm^, ia certainly a projection-valued measure on (B? 

m,^C^)~ e4,i~1,2,...., <rn*,Cv)-0 for T # 

$ { ^ , Xi7'.0. J , and rm^—} 2£ X+ e^ under the map­

ping mentioned in the f i r s t part of the proof* 

We therefore have a one to one correspondence be­

tween the project ion-valued measures and the ring e l e ­

ments with a spectral form* Hence the observables are in 

one to one correspondence with the ring elemets with a 

spectral form* 

Let a, e R have a spectral form, fce e & , saa& 

E e 03 . To determine the probability that in the state 

defined by e , a> measurement of the observable defined 

by a wil l yield a value in E , we f i r s t of a l l take 

the projection-valued measure <fi* associated with 

by the spectral theorem* <p>£ i s then the projection 
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associated with the question "does the value of the ob­

servable defined by a l i e in £ ?w The required pro­

babil i ty i s K^ (^ > -

Let e be a projection and a principal vector of 

degree 4 of a- , corresponding to the eigenvalue X • 

Then e* -= 1*%*} a*** s o w e Se* ^e ^tki ) « 4 . 

Conversely, suppose ^ ^f^Tit^ m ^ * T n e n e- ^f-VAj 

and so e a -* &e , i . e . e i s a principal vector of 

d/ of degree 4 , corresponding to the eigenvalue X . 

If a, and ^ have spectral forms then a, and Mr 

commute i f and only i f p* l^p-V-? <p% for a l l £ 7 

f e <fi (theorem 2.9)• Also, i f a, and Jlr commute, 

we know that there exists an element a e R with spec­

tral form, and functions -p and- q, such that a, - f Cc) 

and Jlr» &(e) (theoren2.10). Thus a and Mr are s i ­

multaneously observable. 
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