[1] A. FRAENKEL:
Sur l'axiome du choix. L'Enseignement Math. 34 (1935), 32-51.
Zbl 0014.25403
[2] K. GÖDEL: The Consistency of the Axiom of Choice... Princeton (1940).
[3] P. HÁJEK, P. VOPĚNKA:
Some permutation submodels of the model $\nabla $. Bull. Acad. Polon. Sci. 14 (1966) - to appear.
MR 0194321
[4] T. JECH, A. SOCHOR:
On $Theta $ -model of set theory. ibid. 14 (1966) - to appear.
MR 0202579
[5] T. JECH, A. SOCHOR:
Applications of the $Theta $ -model. ibid. 14 (1966) - to appear.
Zbl 0168.01002
[6] A. LÉVY:
The interdependence of certain consequences of the axiom of choice. Fundamenta Math. 54 (1964), 135-157.
MR 0162705
[7] A. MOSTOWSKI: Über die Unabhängigkeit des Wohlordnungasatzes vom Ordnungsprinzip. ibid. 32 (1939), 201-252.
[9] K. PŘÍKRÝ:
The consistency of the continuum hypothedis for the first measurable cardinal. Bull. Acad. Pol. Sci. 13 (1965), 193-197.
MR 0181575
[10] H. RUBIN, J. RUBIN:
Equivalents of the Axiom of Choice. North-Holland Publ. Comp., Amsterdam (1963).
MR 0153590 |
Zbl 0129.00601
[12] A. TARSKI:
Axiomatic and algebraic aspects of two theorems on sums of cardinals. Fund. Math. 35 (1948), 79-104.
MR 0029955 |
Zbl 0031.28903
[13] P. VOPĚNKA: Předsvazek relací, Model $\nabla $. (in Czech, Presheaves of relations, the model $\nabla $), mimeographed, Prague (1964).
[14] P. VOPĚNKA:
On $\nabla $ -model of set theory. Bull. Acad. Polon. Sci. 13 (1965), 267-272 .
MR 0182571
[15] P. VOPĚNKA:
Properties of $\nabla $ -model. ibid. 13 (1965), 441-444.
MR 0189984
[16] P. VOPĚNKA, P. HÁJEK:
Permutation submodels of the model $\nabla $. ibid. 13 (1965), 611-614.
MR 0194320